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A B S T R A C T 

The thermal evolution of isolated neutron stars is a key element in unravelling their internal structure and composition and 

establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused 

on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of 
the no v el three-dimensional magnetothermal code MA TINS (MAgneto-Thermal evolution of Isolated Neutron Star). MA TINS 

employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical 
calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the 
methodology employed to solve the thermal evolution equations in MATINS , along with the microphysical implementation that 
is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic 
fields of different configurations (all with electrical currents confined to the crust and a magnetic field that does not thread the 
core), to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field configuration, we 
show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron 

star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected 

by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the 
most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal 
luminosities and the associated X-ray light curves. 

K ey words: stars: e volution – stars: interiors – stars: magnetars – stars: magnetic field – stars: neutron. 
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 I N T RO D U C T I O N  

eutron stars (NSs) are born from the gravitational collapse of a 
tellar core during a supernova explosion. During the first minute of
ts life as a proto-NS , the star is hot ( ∼ 10 11 K), opaque to neutrinos,
nd undergoes a shrinking of its radius and a deleptonization, while 
eutrinos diffuse outwards (Prakash et al. 2001 ). The proto-NS cools 
own until, at a temperature of ∼ 10 10 K, the matter becomes trans-
arent to neutrinos. During the subsequent secular evolution, the NS 

emperature drops due to different processes, which are dominated 
nitially by the leakage of neutrinos, during the so-called neutrino 
ooling era , and later by the emission of photons from their hot
urface, throughout what is known as photon cooling era (e.g. Page 
t al. 2004 ; Yakovlev & Pethick 2004 ; Page, Geppert & Weber 2006 ).
 E-mail: stefano.ascenzi@gssi.it 
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Studying the precise cooling history of NSs can in principle pro-
ide us with a wealth of information. For instance, during the neutrino
ooling era, various neutrino emission processes, characterized by 
 different dependence on the temperature, coexist. The presence 
f a given mechanism and its relative importance with respect to
he others is ultimately determined by the microphysical conditions 
ccurring in the interior of the NS, such as the stellar composition,
he onset of a superfluid phase transition, or/and the presence of
trong magnetic fields. Consequently, the cooling history of NSs can 
ignificantly enhance our understanding of their internal state. 

Moreo v er, there e xists a tension in the fact that the estimated
alactic rate of core-collapse supernovae (CCSNe) is smaller than 
he sum of the birth rates of the dif ferent NS populations (K eane &
ramer 2008 ). This poses a problem for the scenario that attributes

he formation of all the NSs to CCSNe, as they alone could not
ccount for the entire population of NSs in our Galaxy, if we
osit that the presence of phenomenological subclasses inherently 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ignifies distinct types of NSs. Various solutions have been proposed
o this issue, one of which suggests that different NS populations
re related through evolutionary paths (see e.g. Vigan ̀o et al. 2013 ).
f this holds true, we only need to consider a single birthrate for
hese populations, which helps resolve (or at least alleviate) the
ension with CCSN rates. Indeed, magnetothermal cooling models
re capable of establishing this evolutionary link (see Pons & Vigan ̀o
019 for a re vie w). 
Ho we ver, modelling the thermal evolution of NSs is not an easy

ask. The process is determined by several ingredients, which are at
resent not very well understood, such as the model of superfluidity,
he composition of the core, the neutrino processes, and the model
nd composition of the blanketing envelope, which lies abo v e the
uter crust. Moreo v er, the intense magnetic field in the NSs interiors
nfluences the transport properties of the star, making the conduc-
ivity anisotropic. Therefore, an accurate evolution of a strongly
agnetized NS requires a multidimensional approach. Furthermore,

he dissipation of the electric currents, which leads to a decay in the
agnetic field, acts like a heating source in the stellar crust. The
agnetic field decay, in turn, is regulated by magnetic dif fusi vity

in addition to being driven by the Hall effect in the crust and by
mbipolar diffusion and other little-understood mechanisms in the
ore), which is a parameter that depends on the local temperature.
t hence follows that the equations describing the thermal and the
agnetic evolution cannot be considered independently, but must be

olved together in a coupled magnetothermal framework (see Pons
 Vigan ̀o ( 2019 ) for a comprehensive review). 
Extensiv e inv estigations spanning sev eral decades hav e been

ev oted to unra velling the magnetothermal ev olution of NSs. Initial
ttempts primarily delved into cooling phenomena within 1D models,
ith limited consideration for the magnetic field’s impact (Tsuruta &
ameron 1965 ; Yakovlev & Urpin 1981 ; Page & Baron 1990 ; Page
t al. 2004 , 2009 ; Yakovlev & Pethick 2004 ; Kaminker, Potekhin
 Yakovlev 2008 ; Beznogov & Yakovlev 2015a , b ; Potekhin &
habrier 2018 ). Advancing beyond this, subsequent studies ventured

nto axisymmetric, two-dimensional (2D) calculations; ho we ver,
he first studies did not consider a self-consistent coupling in the

agnetothermal ev olution, b ut rather assumed a prescription for the
emperature evolution and solved for the magnetic field one (Pons &
eppert 2007 ) or vice versa (Aguilera, Pons & Miralles 2008 ). 
A step forward occurred with the works by Pons, Miralles &

eppert ( 2009 ), Vigan ̀o, Pons & Miralles ( 2012 ), and Vigan ̀o
t al. ( 2013 ), who presented a consistent treatment of the coupled
agnetothermal evolution in a 2D setting. In particular, the later
orks successfully accounted for the Hall term in the induction

quation, which plays a fundamental role in transferring magnetic
nergy to smaller spatial scales where the dissipation is more ef fecti ve
Pons & Geppert 2007 ), but that had posed a numerical challenge for
revious codes. 
In parallel, the first simulations in 3D adapted the geo-dynamo

ode PAR OD Y (Dormy, Cardin & Jault 1998 ; Aubert, Aurnou &
icht 2008 ) to the NS context, albeit with fixed stellar structures

nd simplified microphysical coefficients (Wood & Hollerbach
015 ; Gourgouliatos, Wood & Hollerbach 2016 ; Gourgouliatos &
ollerbach 2018 ; Gourgouliatos & Pons 2019 ). While these works

ocused on the evolution of the magnetic field, De Grandis et al.
 2020 , 2021 ); Igoshev et al. ( 2021 ); De Grandis et al. ( 2022 ); Igoshev,
ollerbach & Wood ( 2023 ), applied for the first time PAR OD Y to

tudy the coupled magnetothermal evolution problem. 
While all these works have been focused on the magnetic evolution

n the crust alone, progress has also been made in the study
f the more complex evolution in the core (Graber et al. 2015 ;
NRAS 533, 201–224 (2024) 
fengeim & Gusakov 2018 ; Gusakov 2019 ; Castillo, Reisenegger &
aldivia 2020 ; Dommes, Gusakov & Shternin 2020 ; Wood & Graber
022 ). There, a multifluid, multiscale dynamics needs to be studied,
hich implies the presence of ambipolar diffusion, but with non-

rivial complications due to superconductivity and highly uncertain
oupling coefficients between the different fluid components. The
ore evolution is an open problem from a theoretical point of view:
espite the advances in understanding the rele v ant time-scales and
n implementing specific ingredients (such as ambipolar diffusion
or non-superfluid/superconducting matter), no fully self-consistent
nduction equation nor simulations with all the ingredients exist yet.
one the less, the general consensus is that the crustal time-scales are
enerally much shorter than the ones for the core. Therefore, while
he core evolution will determine the field in Gyr-old neutron stars
like millisecond pulsars and low-mass X-ray binaries), the coupled
agnetothermal evolution in the crust, object of this code, has a
uch more direct effect on the observables in young neutron stars

magnetars in particular). 
The aim of this paper is to introduce the thermal part of MATINS

MAgneto-Thermal evolution of Isolated Neutron Star), the magnetic
omponent of which has been already presented in Dehman et al.
 2023a ), with coupled magnetothermal applications in Dehman et al.
 2023c ). MATINS differs from PAR OD Y in three main aspects: (1)
hile PAR OD Y is a pseudo-spectral code, namely it employs a finite
rid in the radial direction and a spherical harmonic expansion in the
ngular directions, MATINS uses a finite volume scheme; (2) while
n PARODY the stellar background is accounted for by assuming
n analytical radial profile for the electron number density (or the
hemical potential, equi v alently) and by defining a radius for the
tar and the crust-core interface, in MATINS the stellar background
nd the composition is obtained by self-consistently solving the
olman–Oppenheimer–Volkoff (TOV) equation with the option of
hoosing between different equation of states (EOSs) among the
nes present in the public database CompOSE (CompStar Online
upernovae Equations of State; Typel et al. 2015 , Oertel et al.
017 ) 1 . Moreo v er, solving for the structure allows us to compute the
pacetime metric within the star, and thus include self-consistently
he general relativistic effects in the magnetothermal evolution.
hese effects in PAR OD Y are neglected; (3) The microphysics in
AR OD Y is described by analytic approximations which describe
he rele v ant quantities (e.g. heat capacity, electrical and thermal
onducti vities, neutrino emissi vity) with simplified dependency on
he temperature and the magnetic field. In particular, these analytic
rescriptions aim to mimic the contribution of the electrons on the
onductivity and heat capacity, which however is not al w ays the
ominant contribution. In MATINS instead we include all the known
ontributions, through a numerical treatment based on the public code
eveloped by Potekhin. 2 This code allows us to include a detailed
reatment of the rele v ant quantities including the contribution of
ifferent species (e.g. electrons, ion lattice, free neutrons) to them.
urthermore, in MATINS a proper treatment of the superfluidity is

mplemented, while in PAR OD Y this phenomenon is neglected. 
The paper is organized as follows. In Section 2 , we introduce the

hermal evolution equation in the MATINS code, further focusing on
he grid employed and on the description of the microphysical set-up.
ection 3 is devoted to the description of the tests we performed to
ssess the reliability of the code. In Section 4 , we present several
uns of MATINS with and without the magnetic field evolution. In

https://compose.obspm.fr/
http://www.ioffe.ru/astro/conduct/
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his section, we also introduce a ray-tracing code that takes as input
he NS’s surface temperature map obtained by MATINS to produce 
hase resolved spectra that a distant observer would detect, and 
resent preliminary applications of this code. Finally, in Section 5 
e summarize our work. 

 T H E R M A L  E VO L U T I O N  IN  MAGNETIZED  

SOLATED  N E U T RO N  STARS  

n this section, we present the set-up of the thermal evolution part of
he MATINS code. First, we introduce the thermal evolution equation. 
hen, we briefly describe the cubed sphere grid that we employ in
ATINS . Finally, we illustrate two different microphysical set-ups 

hat we have included in the code. For specific details on how the
hermal evolution equation is discretized and solved in the code, we 
efer the reader to Appendices B and C . The boundary conditions are
iscussed in Appendix D . 

.1 Background stellar model 

he stellar model is computed by the equation: 

d P 

d r 
= −

(
ρ + 

P 

c 2 

)d ν

d r 
, (1) 

hich describes hydrostatic equilibrium assuming an internal spher- 
cally symmetric and static metric: 

 s 2 = −e 2 ν( r) c 2 d t 2 + e 2 λ( r) d r 2 + r 2 d � , (2) 

here e ν( r) is the lapse function, describing the gravitational redshift, 
nd � is the solid angle. The functional form of λ with radius depends
n the function m ( r) (which represents the mass distribution inside
he star in the Newtonian limit), since 

( r) = −1 

2 
ln 
[ 
1 − 2 Gm ( r) 

c 2 r 2 

] 
. (3) 

n the equation ( 1 ), P and ρ denote the pressure and the density,
espectively. The lapse function, instead, is obtained by solving the 
r component of the Einstein field equations, which, assuming the 
etric in equation ( 2 ), can be written as 

d ν

d r 
= 

Gm ( r) 

c 2 r 2 

(
1 + 

4 πr 3 P 

c 2 m ( r) 

)(
1 − 2 G 

c 2 

m ( r) 

r 

)−1 

, (4) 

long with the boundary condition e 2 ν( R) = 1 − 2 GM/ ( Rc 2 ), where
 is the star gravitational mass and R is the radius of the star. In

ll the equations mentioned abo v e, the constants c and G denote the
peed of light in vacuum and the gravitational constant, respectively. 
quations ( 1 ) and ( 4 ) need to be supplemented with the equation for

he function m ( r): 

d m 

d r 
= 4 πr 2 ρ. (5) 

Equations ( 1 ), ( 4 ), and ( 5 ) are known as TOV equations (Oppen-
eimer & Volkoff 1939 ; Tolman 1939 ). 
Solving the background structure of the star via TOV equation re-

uires the use of an EOS for cold dense matter, which gives the
ressure and composition as a function of the density, along with the
entral pressure P 0 . Currently, MATINS includes different cold EOS 

rom the CompOSE data base. The central pressure P 0 is an input
arameter that regulates the star mass M . 
Finally, abo v e the crust lies a thin ( ∼ 10 –100 m) liquid blanketing

nvelope layer. The steep radial gradients of density, pressure, and 
emperature in this region imply an outward decrease of the local 
hermal time-scales by orders of magnitude, which make it computa- 
ionally unfeasible to follow the long-term (up to Myr ) evolution. For
his reason, as in all cooling codes, MATINS solves the equations for
he core and the crust, down to a threshold pressure given in input
nd here set (as usual in these studies) to a corresponding density
f ∼ 10 10 g cm 

−3 . For the uppermost layers, MATINS allows the 
se of different envelope models (see also Appendix D ), which
elate the temperature at the star surface T s to the temperature at
he threshold pressure (the base of the envelope) T b , and that may
epend, eventually, also on the local magnetic field B . 
The dependence of the results on the envelope models has been

resented for instance in Potekhin, Pons & Page ( 2015 ) and Dehman
t al. ( 2023b ), and we will briefly show some results below. 

.2 Heat diffusion equation 

he heat diffusion equation determines the evolution of the thermal 
nternal structure and surface luminosity. It can be written as follows: 

 v 
∂ ( e νT ) 

∂ t 
+ ∇ · ( e 2 ν F ) = e 2 ν ε̇ , (6) 

here T is the local temperature, c v is the heat capacity per unit
olume, ̇ε represents the sources or losses of energy per unit volume,
nd F is the heat flux. From the lapse function and the temperature,
e can define the redshifted temperature ˜ T as ˜ T ≡ e νT . 
The source/loss term on the right-hand side can be written as

he sum of two contributions ε̇ = ε̇h − ε̇ν . While ε̇ν represent the 
eutrino emissivity per unit volume, the term ̇εh represent the heating 
ate per unit volume due to Ohmic dissipation of the electric current
i.e. the Joule heating), which writes as 

˙h = 

|| J || 2 
σ

, (7) 

here σ is the electric conductivity, which has in the crust a typical
alue in the range σ ∼ 10 22 − 10 25 s −1 , and J is the current density
btained, as standard in magnetohydrodynamics, by the fourth 
axwell’s equation neglecting the displacement current: 

J = e −ν c 

4 π
∇ × (

e ν B 

)
. (8) 

It is worth noticing that other heating mechanisms can in principle
e at play in the stellar crust, e.g. crust-cracking (Baym & Pines 1971 ;
heng et al. 1992 ), non-equilibrium reactions (e.g. Haensel 1992 ;
eisenegger 1995 ; Fern ́andez & Reisenegger 2005 ; Flores-Tuli ́an &
eisene gger 2006 ; Reisene gger, Fern ́andez & Jofr ́e 2007 ; Gonz ́alez-

im ́enez, Petrovich & Reisenegger 2015 ), superfluid vortex creep 
otion (e.g. Alpar et al. 1984 ; Umeda et al. 1993 ; Larson & Link

999 ; Schaab et al. 1999 ); ho we v er, the y are not considered in this
ork. 
Concerning the loss of energy due to the emission of photons at

he surface, we include this contribution by the boundary conditions, 
s described in Appendix D . 

Since the thermal conductivity is generally dominated by the 
ontribution of electrons, under the presence of strong magnetic 
elds it becomes anisotropic, with its contribution in the direction 
rthogonal to the field k ⊥ 

quenched with respect to its contribution
long the field lines k ‖ . It is common to treat the problem in the
elaxation time approximation, where the ratio between the two 
uantities is expressed by the following formula (Urpin & Yakovlev 
980 ): 

k ‖ 
k 

� 1 + ( ω B τ0 ) 
2 , (9) 
MNRAS 533, 201–224 (2024) 
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Figure 1. Visualization of the cubed sphere grid at a given radius. The edges 
between the patches have been highlighted with a bold line. Within each 
patch, thin lines mark the ξ and η directions. 
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here the parameter ω B τ0 is the product between the characteristic
lectron relaxation time τ0 and the electron gyrofrequency ω B , which
s written as 

 B ≡ e|| B || 
m 

∗
e c 

, (10) 

here e and m 

∗
e are the electron charge and ef fecti ve mass, respec-

ively, and B is the local magnetic field. This approximation shows
hat ω B τ0 is the parameter go v erning the heat conduction: when
 B τ0 	 1, either because the magnetic field is strong or because the
lectron collision rate is low, the electrons are tightly anchored to
he field lines, and slip along them, while the transverse motion
s strongly inhibited. This results in a reduction of the thermal
onductivity in the direction orthogonal to the field lines. Vice versa,
hen ω B τ0 
 1, the magnetic field can only poorly constrain the

lectron motion, and the conductivity becomes isotropic ( k ⊥ 

→ k ‖ ).
According to equation ( 9 ) and following P ́erez-Azor ́ın, Miralles
 Pons ( 2006 ), we can write the heat flux as 

 

ν( r) F = −k ⊥ 

[∇ 

∇ ∇ 

˜ T + ( ω B τ0 ) 
2 ( b · ∇ 

∇ ∇ 

˜ T ) b + ( ω B τ0 )( b × ∇ 

∇ ∇ 

˜ T ) 
]
, (11) 

here b ≡ B / || B || is the unit vector in the direction of the magnetic
eld. Three terms contribute to the heat flux: a term parallel to the

emperature gradient, which is the same appearing in Fourier’s law
 F ∝ ∇ 

∇ ∇ T , valid in the absence of magnetic field); a term parallel
o the magnetic field, which is due to the fact that electrons tend to
o v e along the magnetic field lines; and a last term perpendicular

o both the previous ones, known as Hall term, which is due to the
rifting motion of electrons through field lines due to the presence of
he temperature gradient. The magnitude of ω B τ0 regulates which of
hese terms gives the dominant contribution. In the limit where ω B τ0 

s negligible, the first term is the dominant, while when ω B τ0 	 1,
he second term dominates. 

From equation ( 11 ), we can appreciate that the flux shows a linear
ependence with respect to the temperature deri v ati ves, such that it
s possible to re-write the previous equation in matrix form: 

 

ν( r) F 

i = −K 

ij ∂ i ˜ T , (12) 

here we assumed the Einstein sum convention of repeating indices.
he explicit form of the matrix K 

ij and its deri v ation is reported in
ppendix E . 

.3 Grid 

n our code, we use the cubed sphere coordinates as described by
onchi, Iacono & Paolucci ( 1996 ), implemented in MATINS by
ehman et al. ( 2023a ), and successfully used in several other contexts

ike geophysics (Breitkreuz et al. 2018 ; Ding & Wordsworth 2019 ;
 an Driel, K emper & Boehm 2021 ), general relati vity (Lehner, Reula
 Tiglio 2005 ; Carrasco, Palenzuela & Reula 2018 ; H ́ebert, Kidder
 Teukolsky 2018 ; Carrasco et al. 2019 ) and magnetohydrodynamics

Koldoba et al. 2002 ; Fragile et al. 2009 ; Hossein Nouri et al. 2018 ;
ang et al. 2019 ; Yin et al. 2022 ). The spherical volume of the

tar is characterized using a radial coordinate r and two angular
oordinates ( ξ, η). Each spherical surface of constant r is divided
nto six patches, which can be pictured as the six faces of a cube that
ave been inflated to adhere to a sphere. The six patches are identical,
on-o v erlapping, and, as in a cube, each of them is bounded by four
atches. A representation of the cubed sphere grid is reported in
ig. 1 . 
The angular coordinates ξ and η are defined differently in each

atch, such that they are not singular and assume values in the range
 −π/ 4 , π/ 4]. Moreo v er, ξ and η are non-orthogonal everywhere,
NRAS 533, 201–224 (2024) 
xcept at the centre of each patch, which implies non-diagonal
erms in the metric, i.e. additional terms in the mathematical
perators used in the discretized equations (gradients, scalar and
ross products). This grid presents two main advantages: first, it
as a radial coordinate, which is desirable since the background is
pherically symmetric (see Section 2.1 ). Moreo v er, the problem we
im to solve is characterized by strong radial gradients, such that
 radial coordinate allows us to refine the resolution more in the
adial direction than in tangential ones. Secondly, the coordinates
re regular everywhere, in contrast, for example, with the spherical
nes, which are singular along the axis. The metric, the line, surface
nd volume elements and the differential operators for the metric
re reported in Appendix A and in more detail by the accompanying
aper Dehman et al. ( 2023a ). 

In order to consider the deri v ati ves, we use one layer of ghost cells
ying behind each edge in the ξ and η directions. The values of the
uantities at these ghost points are obtained by linear interpolation
rom the cells of the neighbouring patches. This prescription is
xplained more extensively in Appendix C . 

Hereafter, the resolution of the grid will be denoted by the number
f radial cells N r and the number of angular cells per-patch N a ,
here N a is the same for the ξ and η directions. In line with its 2D
redecessors (Vigan ̀o et al. 2012 ; Vigan ̀o et al. 2021 ), in MATINS the
hermal grid has half the resolution of the magnetic grid. Specifically,
he temperature is evolved only at the centre of the thermal grid,
hile the magnetic field is defined and evolved also at its edges and

nterface centres. Hence, the magnetic field discretized locations are
ight times more than the temperature ones. This choice is guided
y two considerations: firstly, the computational needs, since the
ost of the implicit scheme adopted for the thermal evolution (see
ppendix B ) scales non-linearly with the total number of points,
hile the magnetic evolution is linear. Secondly, because of the
ature of the equations: the non-linear Hall term in the induction
quation naturally create small structures and a cascade (Dehman
t al. 2023a ), something not present, by definition, in the diffusion
f the heat which thus only needs a more moderate resolution. 
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Figure 2. Relative L2 deviation between the analytic and numerical solution 
as a function of time (measured in diffusion time-scale units). The circles 
represent simulations with the magnetic field oriented along the z -axis with 
low ( N a = 7 , N r = 20; blue), medium ( N a = 14 , N r = 20; orange), and high 
( N a = 28 , N r = 20; green) resolution. Red crosses and purple diamonds are 
simulations at medium resolution with different magnetic field orientations. 
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.4 Microphysics 

he stellar microphysics enters the heat diffusion equation through 
he heat capacity per unit volume c v , the source term ε̇, the thermal
onductivity k ⊥ 

and the ω B τ0 parameter. In MATINS , these quantities 
re defined at the centre of the cells. To compute the value of
 ⊥ 

and ω B τ0 at the cell interfaces, needed to calculate the flux
see Appendix E ), we interpolate their values at the cell centres.

e tested a linear interpolation on the variables k ⊥ 

and ω B τ0 , as
ell as on their logarithm. We chose the latter since we consider

t as more suitable to describe quantities that can exhibit orders of
agnitude variations among adjacent cells. Moreo v er, our numerical 

xperiments show slightly higher stability of the code, although, in 
ny case, the differences in the results are negligible and decrease 
ith increasing resolution. 
The microphysics set-up employed by the MATINS code is the 

ame as the one already used in the previous 2D code (Vigan ̀o
t al. 2013 , 2021 ), where the microphysical quantities are calculated
umerically exploiting the public code released by A. Potekhin. A 

etailed re vie w of the microphysics can be found in Potekhin et al.
 2015 ), while here we provide a summary description of the most
mportant microphysical process contributing to the macroscopic 
uantities entering in equation ( 6 ). 
As already described in the previous Section 2.2 , the thermal 

onductivity under the presence of a magnetic field is anisotropic and 
t is described by a tensor, whose components are calculated using
otekhin’s public code. 3 In the core, the conductivity, dominated 
y electrons, is very high. In the crust, the conductivity is lower,
nd it is mostly influenced by the interaction between electrons, 
mpurities in the lattice, lattice phonons, and phonons of the neutron 
uperfluid and non-superfluid neutrons (see fig. 4.5 of Vigan ̀o 2013 ,
or a comparison between the different contributions). In the direction 
f the magnetic field, the electrons are expected to be the main
ontributor to the heat transfer, while in the orthogonal direction, the 
honons can become dominant if the magnetic field is particularly 
ntense. Finally, in our analysis, we neglect the quantizing effects 
ue to the gradual fillings of Landau levels, which leads the thermal
onductivity to oscillate with varying density around the classical 
alue. Although these effects are considered in the Potekhin code, 
heir inclusion is particularly e xpensiv e from a computational point of 
iew, and since their contribution becomes important only at densities 
ower than that of the crust (such as in the external envelope), we can
afely neglect them. 

The heat capacity per unit mass in the outer crust has contributions
rom the degenerate electron gas and the ion lattice, while in the
nner crust also the neutron gas contributes if the temperature is
bo v e the neutron superfluidity critical value. For its calculation 
e employ the public code by Potekhin 4 , properly designed for a

trongly magnetized, fully ionized electron-ion plasma. 
The neutrino emissivity dominates the stellar cooling in the first 

0 4 –10 5 yr (neutrino cooling era). After that the drop in temperature 
uenches the neutrino emission and the star cools mainly through the 
mission of thermal photons from the surface (photon cooling era). 
n this set-up the neutrino emissivity is described by the formulae 
rovided in table 1 of Potekhin et al. ( 2015 ). 
The microphysical set-up of our code implements also super- 

uidity correction to the previous quantities for neutrons (singlet 
tate) in the crust and for neutrons and protons in the core (triplet
nd singlet states, respectively). The energy gap and the critical 
 http:// www.ioffe.ru/ astro/ conduct/ 
 http:// www.ioffe.ru/ astro/ EIP/ 

c
t

l

emperature are approximated as a function of Fermi momenta by the
arametrization provided in Kaminker, Haensel & Yakovlev ( 2001 ), 
hose fit parameters depend on the chosen superfluid gap model. In
ATINS , we provide the possibility to choose between the same gap
odels present in the 2D code of Vigan ̀o et al. ( 2021 ). The models

nd the relative parameter values are listed in table II of Ho et al.
 2015 ). Throughout this work, we employ the same gap model choice, 
orresponding to the model indicated by Ho et al. ( 2015 ) as SFB
Schwenk, Friman & Brown 2003 ) for the neutron in the crust, TToa
T akatsuka & T amagaki 2004 ) for the neutrons in the core, and CCDK
Chen et al. 1993 ; Elgarøy et al. 1996 ) for the protons in the core. 

.5 Time-step and w orkflo w 

ince the cooling time-scale is highly dependent on the temperature 
tself (mostly due to the neutrino processes), it increases by orders of
agnitude in the long term. Therefore, in MATINS the time-step is

et proportional to the time itself. Users can customize this time-step
y specifying the constant of proportionality, with default value set 
t 0.1. Additionally, the time-step has a minimum and a maximum
alue that typically we set as �t min = 10 −2 and �t max = 10 4 yr,
espectively. With this choice of parameters, MATINS completes 
 simulation with 1 Myr as total physical time in ∼ 250 thermal
volution time-steps. 

The workflow of MATINS closely resembles the one presented by 
igan ̀o et al. ( 2021 ) in the predecessor 2D magnetothermal code.
or a detailed visual representation, we refer the reader to Fig. 2

n their work. At the beginning of the simulation, we import the
nput parameters and utilize them to construct the stellar background. 
dditionally, we initialize the temperature and the magnetic field. 
ubsequently, we initiate the thermal evolution loop, wherein, at 
ach time-step, the microphysics of the star (thermal and electric 
onductivities, heat capacity, neutrino emissivity) is updated using 
he new values of temperature and magnetic field. 

The magnetic evolution loop is nested within the thermal evolution 
oop. During each thermal time-step, the magnetic field undergoes 
MNRAS 533, 201–224 (2024) 

http://www.ioffe.ru/astro/conduct/
http://www.ioffe.ru/astro/EIP/
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5 The L2 error, as defined in equation ( 14 ) weights more the cells with higher 
temperature. 
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v olution, inv olving the calculation of currents and the Joule heating
erm, which enters the source term on the right-hand side of equation
 6 ). If the magnetic field evolution is disabled, the Joule heating is
witched off. Once the nested magnetic loop is complete (typically,
 magnetic time-step of fraction of year, meaning hundreds or
housands per each thermal time-step), the temperature is updated,
nd a new cycle begins. 

 TESTS  

n this section, we describe two problems employed to test MATINS :
 test with a simplified microphysics and a known analytical solution
hereafter benchmark test ), and a test with realistic microphysics. 

.1 A benchmark test 

n this section, we describe a benchmark test to MATINS : a problem
ith a known analytical solution presented in P ́erez-Azor ́ın et al.

 2006 ). It consists of a non-stratified spherical shell with inner radius
 in and outer radius r out , with a uniform, non-evolving magnetic
eld oriented along a given axis. The model assumes a uniform
onductivity and heat capacity . Additionally , the general relativistic
orrections are neglected. No source term is included, thus the
roblem tests the anisotropy of the heat diffusion. This problem
dmits the following analytical solution: 

 ( r, θ, t) = T 0 

( t 0 

t 

)3 / 2 
exp 

[ 
− c v r 

2 

4 k ⊥ 

t 

(
sin 2 θ + 

cos 2 θ

1 + ( ω B τ0 ) 2 

)] 
, 

(13) 

here T 0 and t 0 are the initial values of temperature and time, θ is the
olar angle calculated from the axis centred on the star, and parallel
o the magnetic field direction [see Ronchi et al. ( 1996 ); Dehman
t al. ( 2023a ) for details about transformation between spherical
nd cubed-sphere coordinates]. The problem is expressed in dimen-
ionless physical units, where c v = k ⊥ 

= t 0 = 1, r in = 5, r out = 10,
 0 = 100, ω B τ0 = 10. With this choice of units the diffusion time-
cales, defined as τdiff ≡ c v ( r out − r in ) 2 /k ‖ , is τdiff = 0 . 25. We choose
he simulation time-step �t = 0 . 01 
 τdiff . Given the unconditional
tability of the implicit method, we use to solve the heat diffusion
quation, the time-step is not subjected to the Courant condition or
ny similar limitation. As such, the time-step is the same for all the
esolutions employed here. For this test, instead of the usual boundary
onditions (described in Appendix D ), we impose, at each time t ,
he analytical value of T given by equation ( 13 ) at the innermost and
utermost radii. 
First, we tested our code on this problem by choosing the

rientation on the uniform magnetic field along the z-axis, such
hat the magnetic field is perfectly radial at the centre of the north
nd south patches of our cubed-sphere grid. We performed three
imulations at three different angular resolutions: a low ( N a = 7),
edium ( N a = 14), and high resolution ( N a = 28). In all these cases,

he radial resolution is held fixed, at a value of N r = 20. In Fig. 2 , we
how at each time-step the average L2 relative error, quantifying the
 olume-a veraged deviations from the analytical solution, defined as 

vg L2 ( t) ≡
∑ cells 

i [ T num 

i − T ( r i , θi , t)] 2 ∑ cells 
i T 2 ( r i , θi , t) 

, (14) 

here the sum is performed all o v er the computational domain.
ere, T num denotes the numerical solution, while T ( r i , θi , t) denotes

he analytical solution calculated at the centre of the i th cell. 
The results are reported with circle symbols in Fig. 2 . The label

centre’ indicates that in these simulations the magnetic field is radial
NRAS 533, 201–224 (2024) 
t the centre of a patch. As one can see, improving the angular
esolution by a factor of 2, impro v es the av erage L2 by almost an
rder of magnitude. With respect to the three cases with a radial
eld at the patch’s centre (blue, orange, and green curves), we note

hat, although L2 decreases with increasing angular resolution, the
ncrease of L2 in time is faster at higher resolution. This behaviour
an be ascribed to the fact that at higher resolution the size of the
ell in the transverse direction becomes comparable to its radial size
which is fixed in the three cases), causing the radial resolution
o constrain the numerical performance. Additionally, the error
ccumulates non-linearly with increasing resolution, so that we do
ot expect the three curves to exhibit the same slope. Nevertheless,
espite their faster growth, the L2 at medium and high resolution
lso exhibit a negative second deri v ati ve, indicating a deceleration
n their growth rates o v er time, which is more pronounced in the
igh-resolution case. 
The result of this simulation for the high-resolution case is reported

n Fig. 3 for three different times. As expected, we notice that the
emperatures diffuse mainly along the direction of the magnetic field,
hile the diffusion in the orthogonal direction is suppressed. In
ig. 4 , we report also the equatorial cut at the final time-step of

he simulation. From this figure, we can appreciate how the axial
ymmetry is maintained during the simulation. 

Finally, we repeat the same test but orienting the symmetry axis
f the problem in different directions, in order to check if we are
ble to obtain the same evolution of the system. We perform four
dditional simulations at medium resolution, in which the field is
riented along the x-axis, the y-axis, the centre of the edge between
n equatorial patch and the north pole patch, and the corner between
wo equatorial patches and the north pole patch. The result in terms
f average L2 is shown in Fig. 2 , along with the result for the cases
ith the field along the z-axis discussed before. Here, the errors for

he field orientated along the patch centres (namely along the x , y ,
r z-axis) perfectly o v erlap and correspond to the orange curve. In
he other two cases where the field is radial at the centre of an edge
etween two patches (red crosses) or at the corner between three
atches (purple diamond), the error is, at the end of the simulation, a
actor of ∼ 2 and a factor of ∼ 8 smaller than in the previous cases
ith the same resolution, respectively . Additionally , also the curve’s

lopes appear dif ferent, e ven if in all cases we note a flattening in
he final steps. The reason for these differences can be, at least in
art, ascribed to the differences in the cells, both in terms of size and
hape, of the cubed sphere grid within the patch. The higher error in
he ‘centre’ case, for example, can be moti v ated by the fact that the
ells at the centre of the patch are the largest ones. Therefore, the
ot-column (see Fig. 3 ), in the ‘centre’ case (orange curve in Fig.
 ) becomes less resolved than the other two cases (red and purple
urves), leading to a larger L2 error. 5 On the other hand, the ‘corner’
ase (purple curve) is associated with a lower error than the ‘edge’
ase (red curv e), ev en though the corner cells are slightly larger than
he cells at the edge’s centre ( ∼ 77 per cent and ∼ 70 per cent of
he size of the cell on the patch centre, respectively). In this case,
e ascribe the lower error to the difference in the shape of the cells

t the corner compared to those at the edge’s centre. Indeed, the
ormer are more suitable to approximate the circular section of the
ot column, than the latter. We thus conclude that the difference in
he error among the three cases is non-trivial, and is determined by a
ombination of different factors. 



3D code MATINS 207 

Figure 3. Meridional cut of the internal temperature profile (in dimensionless units) of the benchmark test. In this test, the microphysics is uniform, with 
dimensionless value of c v = k ⊥ = 1, the magnetic field is uniform and oriented along the z-axis, and with ω B τ0 = 10. The initial temperature profile has a 
cylindrical symmetry around the magnetic field axis and evolves in time according to equation ( 13 ). The figure shows the run with high resolution ( N r = 20, 
N a = 28) at three different times ( t = 0 τdiff , t = 2 τdiff and t = 4 τdiff ). 

Figure 4. Equatorial cut of the internal temperature profile (in dimensionless 
units) of the benchmark test with the field oriented along the z -axis and high 
resolution ( N r = 20, N a = 28) at time t = 4 τdiff . 
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Figure 5. Map of the relative error in the benchmark test on a spherical shell 
at r = 0 . 25( r out + r in ). The patches’ edges are underlined with a red curve. 
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Note that, regardless of the (low) resolutions employed here and 
he magnetic orientation, the relative uncertainty, estimated by the 
quare root of the L2 error, is in the range of 1 –4 per cent and
ecreases with resolution, therefore perfectly acceptable. 
Finally, with the aim of assessing how the accuracy of our 

umerical solution varies with respect to the angular position on 
he cubed sphere grid, we report in Fig. 5 (a) map of the relative
ncertainty, calculated at the final time-step, on a spherical surface 
ut at the (arbitrarily chosen) radius r = 0 . 25( r out + r in ). We define
he relative error as [ T num 

i − T ( r i , θi , t)] / max [ T ( r i , θi , t)], where the
enominator is the maximum temperature on the chosen spherical 
ut. We use the maximum of the temperature in the definition of the
elative error, instead of the value point by point, in order to a v oid
arge error values where the temperature is low. We observe that the
rror is largest at the interfaces between the equatorial and the polar
atches, but not at the edges between one equatorial patch and the
ext one. 

.2 Tilting the field in a realistic model 

n the previous section, we studied the effect of tilting the orientation
f the magnetic field in the benchmark test. In this section, we repeat
he e x ercise with a realistic model, which, unlike the benchmark test,
ncludes a physical NS background, neutrino emission processes, a 
on-uniform magnetic field, general relativistic corrections, and the 
MNRAS 533, 201–224 (2024) 
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M

Table 1. Simulations set-up. The first four columns report the name of the simulation, the mass of the star, the EOS, and the magnetic field intensity averaged 
o v er the crustal volume. The last four columns describe the initial magnetic field configuration. This is constructed by decomposing the magnetic field into 
poloidal and toroidal components, which are obtained from a poloidal and a toroidal scalar functions as described in equation ( F1 ) of the Appendix F . The 
poloidal and toroidal scalar functions are defined in turn by a spherical harmonic expansion, with the expansion coefficients as input parameters. The columns 
report the degree l and the order m of the non-vanishing spherical harmonic weights of the initial poloidal and toroidal field e xpansion. F or more details on the 
initial magnetic field configuration we refer the reader to Appendix F or to Dehman et al. ( 2023a ). The input parameters that define the configurations reported 
here are summarized in the supplementary Table F1 . 

Name M [ M 
] EOS B avg (G] l p m p l t m t 

BSk24-M1.4-B0 1.47 BSk24 0 / / / / 

BSk24-M1.8-B0 1.87 BSk24 0 / / / / 

Sly4-M1.4-B14-L1 1.40 SLy4 6 × 10 14 1 0 / / 

Sly4-M1.6-B14-L1 1.60 SLy4 6 × 10 14 1 0 / / 

SLy4-M1.4-B14-L2 1.40 SLy4 2 × 10 14 1 −1,0,1 1 −1, 0, 1 
2 −2, −1,0,1,2 2 −2, −1,0,1,2 

SLy4-M1.4-B14-L5 1.40 SLy4 2 × 10 14 1 −1,0,1 1 0, 1 
2 −1,0,1,2 2 0,1,2 
3 −1,0,1,2,3 3 0,1,2,3 
5 −1,0,1,2,3 5 0,1,2,3 
2 −1,0,1,2 2 0,1,2 
3 −1,0,1,2,3 3 0,1,2,3 
5 −1,0,1,2,3 5 0,1,2,3 

SLy4-M1.4-B14-L10 1.40 SLy4 2 × 10 14 1 −1,0,1 1 −1, 0, 1 
2 −2, −1,0,1,2 2 −2, −1, 0,1,2 
9 −7, −2,0,2,5 10 −1,0,1 
10 −6, −5,0,3,10 

SLy4-M1.4-B14-L2-alt 1.40 SLy4 3 × 10 14 1 −1,0,1 1 −1, 0, 1 
2 −2, −1,0,1,2 2 −2, −1,0,1,2 
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Figure 6. Top: Cooling curve for three different configurations of the Sly4- 
M1.4-B14-L1 model, where the magnetic axis falls on the centre of the patch 
(blue), on the edge between two patches (orange) and on the corner between 
three patches (green). The resolution of all the simulations is N a = 25 and 
N r = 30. Bottom: relative error of the ‘edge configuration’ and the ‘corner 
configuration’ with respect to the ‘centre configuration’. 
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oundary conditions described in Appendix D . The model employed
or this study is Sly4-M1.4-B14-L1 reported in Table 1 , characterized
y a crust-confined dipolar poloidal magnetic field configuration.
his configuration is characterized by the presence of two antipodal
agnetic poles and it is symmetric for rotation around the magnetic

xis, defined as the axis passing through the centres of the poles and
he centre of the star. The temperature field is initially uniform, with
 value of T = 10 10 K . Further details on realistic configurations are
rovided in the next section. Here, we limit ourselves to analysing the
mpact of the different orientations of the magnetic axis on the results.
his is shown in Fig. 6 , where, in the top panel, the bolometric thermal

uminosity of the star is shown for three different configurations: one
onfiguration in which the magnetic axis passes through the centre
f the patches (blue points), one in which it passes through the
entre of the edge between two patches (orange points), and one
n which it passes through the corner between three patches (green
oints). From this figure, we can appreciate how the three curves
ppear indistinguishable. In the lower panel, we plot the relative
rror of the second and third configurations, taking the first one
s a reference. We can see that before ∼ 3 × 10 5 yr for the edge
onfiguration and ∼ 6 × 10 5 yr for the corner configuration, the error
emains below 1 per cent , for a total simulation time of 1 × 10 6 yr .
eyond this time, the increase of the relative error, which almost

eaches 10 per cent at the end of the simulation, is likely caused by
he rapid decrease in luminosity. Even including the increased error
t very late times, the simulations are in good agreement with each
ther well within the observational uncertainties. This test shows
hat the results keep their consistency under rotation of the magnetic
eld not only in the simplified benchmark test, but also for a realistic
odel. 
NRAS 533, 201–224 (2024) 
 RESULTS  

et’s now turn to the application of MATINS to a realistic NS
tructure, under different magnetic field configurations. All the initial
agnetic field configurations here considered are confined to the
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rust as discussed more in detail in Dehman et al. ( 2023a ). Unless
tated otherwise, we run our simulations for a total time of 1 Myr .
s a benchmark for our study, we consider an NS characterized by

he unified (i.e. crust + liquid core) EOS SLy4 (Douchin & Haensel
001 ), which assumes a minimal composition of neutrons, protons, 
lectrons, and muons in the core and is obtained in a tabulated form
rom the CompOSE data base. Finally, in most of our simulations, we
se the simple, classical envelope model by Gudmundsson, Pethick 
 Epstein ( 1983 ) (see equation D5 in Appendix D ). This decision

s based on its simplicity and its adequacy for the objectives of
he current study. We also discuss one case with a magnetized iron
nvelope model from Potekhin et al. ( 2015 ). 

Since here we mostly focus on the thermal evolution, in most
imulations we keep the magnetic field fixed. Ho we ver, we will also
resent one simulation (up to 10 5 yr due to the substantially higher 
omputational cost) with a fully coupled magnetothermal evolution, 
here also the Joule heating is accounted for. We refer to Dehman

t al. ( 2023a ) for the evolution of the magnetic field with simplified
reatment of temperature adopted from Yakovlev et al. ( 2011 ) to
ehman et al. ( 2023c ) for the first fully coupled magnetothermal

tudy with MATINS . We show below the results in terms of thermal
volution (i.e. cooling curve) and the corresponding pulsed profile 
xpected from a given temperature map on the stellar surface. Notice 
hat the total (photon) luminosity of the source at a given time that
e report in the cooling curve has been calculated by integrating 

quation ( D4 ) o v er the entire stellar surface. For NS that are not
oo old, this luminosity is emitted mainly in the X-ray band, and
hus this quantity can be compared with observations, if the distance 
nd the interstellar absorption below ∼ 1 keV can be well estimated. 
oreo v er, ideally, one can infer the temperature map on the surface of

he star and the emission model (here assumed as a blackbody for sim-
licity) by a simultaneous fit of light curve in different energy bands.

.1 Thermal evolution 

e run different simulations, with and without magnetic field, 
ith different EOSs and different field configurations. Our runs are 

ummarized in Table 1 . The first column denotes the name of the
imulation, the second the gravitational mass of the star, and the third
eports the EOS that we used. The remaining columns specify the 
onfiguration of the magnetic field. In MATINS , the initial magnetic 
eld configuration is set up by defining the multipolar weights of

he expansion of the poloidal and toroidal scalar functions � and 
, respectively, as described in detail in Appendix B of Dehman 

t al. ( 2023a , see their equation B3 ). The fourth column reports the
verage value of the magnetic field in the crust, the fifth and sixth
seventh and eight) columns report the degree l and the order m of the
on-vanishing multipoles in the expansion of the poloidal function 
 (toroidal function �), respectively. As in virtually any existing 
agnetothermal simulation in literature, in all these simulations 
e impose potential boundary condition at the surface. The radial 

omponent of the magnetic field at the crust-core interface is kept 
t zero. We refer to Dehman et al. ( 2023a ) for more details about
oundary conditions, and to the Appendix F and Dehman et al. 
 2023a ) for more details on the initial magnetic field configuration. 

The first simulation that we show, the Sly4-M1.6-B14-L1 , involves 
 magnetized star. The result of this run is presented in Fig. 7 .
ere, the luminosity of the different neutrino emission processes is 

epresented with coloured lines. Continuous lines denote processes 
ccurring in the core of the star and the dashed line denotes processes
n the crust (the same process may involve both the crust and the
ore and in those cases, the same colour appears in the plot with
oth a continuous and a dashed line). The continuous and the dashed
lack light denote the total neutrino luminosity for processes in the
ore and in the crust, respectively . Finally , the dotted black line
epresents the luminosity in photons. From Fig. 7 , it is evident that
he cooling process is primarily go v erned by neutrino emission until

25 kyr , beyond which photon emission from the surface becomes 
he dominant cooling mechanism. 

With respect to the neutrino emission, we can appreciate how the
ore provides the main contribution to the neutrino energy loss being
–3 orders of magnitude larger than the crustal one, at all times. This
eflects that most of the mass (typically ∼ 99 per cent ) is in the core,
nd that it is denser than the crust, although we need to acknowledge
hat the processes in the two regions are rather different, and as
uch they cannot be directly compared. In the core, the dominant
echanisms are represented by the Modified URCA processes and 

he neutron–neutron Bremsstrahlung until ∼ 100 yr , when the core 
ecomes superfluid. After that, neutron Cooper pair formation is the 
ain neutrino cooling mechanism. The onset of the superfluidity in 

he core is also followed by an increase in the slope in the photon
uminosity. The crust, instead, is characterized by a much lower 
eutrino luminosity with respect to the core. Here, the dominant 
echanism is the neutrino-synchrotron emission, by virtue of the 

trong fields present in the crust with this set-up. We stress that
n the legend we indicate all the neutrino processes included in
he simulation, even if some of them are not ef fecti vely acti ve in
his particular simulation and as such, they do not appear in the
gure. F or e xample, the neutrino pair-production is a process that
ecomes active at low densities and high temperature (it dominates 
t ρ � 10 10 g / cm 

3 and T > 10 9 K, see fig. 3 of Potekhin et al. 2015 ),
ut it becomes strongly suppressed, due to the reduced number of
ositrons, when the temperature drops below the Fermi value. The 
bsence of direct URCA in the core can be instead ascribed to the
ow abundance of protons in the core that characterizes this set-up.
n Appendix G , we show the acti v ation of this important cooling
rocess for a simulation employing a different EOS, which allows 
irect URCA abo v e a given threshold mass. 
These results do not depend on the 3D nature of the code and are

n agreement with our current knowledge about the cooling of NSs.
ev ertheless, the y sho w ho w the interplay among dif ferent neutrino

mission processes plays an important role in the modelling of the
ooling curve of an NS. In this sense, to our knowledge, MATINS is
he most advanced 3D code in terms of including all of these essential
ontributions. 

.2 Simulations with different magnetic configurations 

tarting with the aforementioned set-up for the EOS, the superfluid- 
ty, and the envelope model, we study the thermal evolution of an NS
haracterized by a mass of M = 1 . 40 M 
, varying the configuration
f its magnetic field as described in Table 1 . 
Except for the dipolar cases Sly4-M1.6-B14-L1 and Sly4-M1.4- 

14-L1 , where we aimed at an axisymmetric poloidal configu- 
ation, all other non-axisymmetric configurations have been cho- 
en arbitrarily. For a realistic initial magnetic field configuration 
nspired by dynamo simulations representing the proto-NS stage 
Reboul-Salze et al. 2021 ), we direct the reader to Dehman et al.
 2023c ). 

In Fig. 8 , we report the cooling curves of the case Sly4-M1.4-
14-L1 (dipole), characterized by an axisymmetric poloidal field 
onfiguration, and the non-axisymmetric cases Sly4-M1.4-B14-L2 
quadrupole), Sly4-M1.4-B14-L5 and Sly4-M1.4-B14-L10 . As one 
an see, all the configurations have a similar cooling curve. This is
MNRAS 533, 201–224 (2024) 
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Figure 7. Evolution of neutrino and photon luminosities of all the different emission processes o v er the NS history for the simulation Sly4-M1.6-B14-L1 . This 
run, which uses the SLy4 EOS, is characterized by a mass of M = 1 . 6 M 
 and a dipolar poloidal magnetic field with a crust-averaged value of B avg = 6 × 10 14 

G. The chosen resolution is N a = 25, N r = 30. Solid-coloured lines represent different neutrino emission processes occurring in the core. Dashed lines represent 
different neutrino emission processes occurring in the crust. The same process (marked with a given colour) may involve both the core and the crust. Black 
lines represent the total neutrino luminosity for processes involving the core (continuous line) and the crust (dashed line), respectively. The black-dots report the 
surface photon luminosity. It is worth noticing that while the legend includes all the possible neutrino processes included in the simulation, some of them are 
not ef fecti vely acti ve in this particular simulation, as such, they do not appear in the figure. Moreo v er, in case magnetic fields are present in the core, additional 
processes can become rele v ant (Kantor & Gusakov 2021 ). 
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ue to the fact that the cooling processes are the same for all the
onfigurations, while the Joule heating, which is determined by the
time-dependent) magnetic field intensity and geometry, is naturally
bsent since the field is constant in time. 

A 3D rendering of the magnetic field lines and the temperature
t the crust-envelope interface T b ( θ, φ) e v aluated after 2726 yr of
volution is reported in Fig. 9 for the four different configurations
ust described. 6 From the figure, it is possible to appreciate the
mpact of the configuration of the magnetic field on the temperature
istribution. The cold areas on the map correspond to regions
ith a stronger magnetic field oriented perpendicular to the radial
irections. In these areas, the magnetic field acts as an insulating
arrier between the outer crust’s surface and the hotter interior. As a
esult, while these regions lose thermal energy through neutrino and
hoton emission, there is no replenishment by heat diffusion, leading
o the formation of cold spots. Vice versa, when the magnetic field
s weaker, or it has a significant radial component, the outer regions
f the crust are coupled and the heat lost can be replenished by
NRAS 533, 201–224 (2024) 

 For the cases Sly4-M1.4-B14-L2 (central left), Sly4-M1.4-B14-L5 (central 
ight), and Sly4-M1.4-B14-L10 (right), we report here a case with enhanced 
ngular resolution N a = 41. 

p  

o  

a  

m  

i  
iffusion, thus generating a hot area. Clearly, the complexity of the
eld reflects the complexity of the temperature map: a magnetic field
haracterized by small-scale structures leads to smaller hot-spots at
he crust-envelope boundary. 

In Fig. 8 , we have also included (orange dashed line) a variation
f the run SLy4-M.1.4-B14-L2 , where the envelope described in ap-
endix B of Potekhin et al. ( 2015 ) is used instead of Gudmundsson’s
odel. Similarly to Gudmundsson’s model, the envelope in Potekhin

t al. ( 2015 ) comprises heavy elements such as iron; ho we ver, unlike
he former, the latter also incorporates the effect of the magnetic field
n the modelling. As depicted in the figure, the cooling curves for the
wo models are comparable, with the magnetized envelope resulting
n a slightly lower luminosity. This outcome will be discussed in

ore detail in Section 4.3 . 
Finally, we present the run SLy4-M.1.4-B14-L2-alt , which has

he same multipole components of the run SLy4-M.1.4-B14-L2 , but
ith a different field configuration, in which the contribution of

he toroidal multipoles with l = 2 has been enhanced. This run is
resented in two versions: a purely thermal one, where the evolution
f the magnetic field is frozen like in the cases previously studied,
nd a magnetothermal one SLy4-M.1.4-B14-L2-alt-MT , where the
agnetic field is evolved and Joule heating is correspondingly

ncluded. Since a full magnetothermal simulation is considerably
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Figure 8. Cooling curves of different models characterized by different 
magnetic field configurations. The case Sly4-M1.4-B14-L1 is character- 
ized by an axisymmetric dipolar poloidal field. The cases Sly4-M1.4-B14- 
L2 (quadrupole), Sly4-M1.4-B14-L5 , and Sly4-M1.4-B14-L10 have a non- 
axisymmetric field configuration. All the simulations are characterized by the 
same mass of the NS ( M = 1 . 4 M 
), the same EOS (SLy4) and the same 
resolution of N a = 31 and N r = 30. The magnetic field is not evolved. 
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ore e xpensiv e from a computational point of view than a simulation
ith a non-evolving magnetic field, we restricted this run to a 
aximum time of 10 5 yr only. 
In the magnetothermal case, the effect of Joule heating can be 

ppreciated in Fig. 8 . Here, the brown curves represent the magne-
othermal run SLy4-M.1.4-B14-L2-alt-MT , which can be compared 
ith the purple curve representing the same configuration with a 
igure 9. 3D rendering of the models SL y4-M1.4-B14-L1 , SL y4-M1.4-B14-L2 ,
 = 2726 yr . Top: temperature map at the base of the envelope T b . Bottom: Magneti
se the same mass of M = 1 . 4 M 
 and the EOS SLy4. The chosen resolution is N a
on-evolving magnetic field. In this case, the heating produced by the
issipation of the currents has the effect of increasing the luminosity
f the star by a factor ∼ 2 –3 after the first ∼ 100 yr of evolution. 
A 3D rendering of this run (with an enhanced angular resolution of
 a = 41) at time 2726 yr is reported in the bottom row of Fig. 10 . The
gure represents, from left to right, the temperature T b , the magnetic
eld, and the electric currents. The upper row represents the same run
ith the non-evolving magnetic field ( i.e. SLy4-M.1.4-B14-L2-alt ) at 

he same evolutionary time, with the same spacial orientation and 
ith the same colour range for the represented quantities, so that the

mages in the upper and bottom rows are directly comparable. As we
an see, the temperature at the base of the envelope, in this case, is
igher than in all the previous cases, due to the presence of the heating
ource. The other point to note is that, apart from an o v erall scaling,
he angular distribution of T b is radically different with respect to
he equi v alent case with the non-e volving magnetic field. It appears
n fact that the two distributions are almost inverted, with the hottest
egions of one roughly corresponding to the coldest regions of the
ther. The reason may rely on the fact that the coldest regions in
he case with non-evolving magnetic field, which are those with an
ntense non-radial field that provides an insulating effect, are also 
he ones that in the magnetothermal case develop stronger currents 
nd consequently more Joule heating. This effect is well known 
rom previous 2D studies like Pons et al. ( 2009 ) and Vigan ̀o et al.
 2013 ). This deep change in the T b angular distribution is particularly
mportant because it is expected to have a major impact on the pulsed
rofile observed from the source, as we will see in the next section. 

.3 Light cur v es 

s we saw from the previous results, the magnetic-induced 
nisotropy in the thermal conductivity generates an inhomogeneous 
emperature distribution on the surface of the NS, presenting hotspots 
nd colder regions. While the star undergoes rotation, the observer’s 
MNRAS 533, 201–224 (2024) 

 SL y4-M1.4-B14-L5 , and SL y4-M1.4-B14-L10 (from left to right) at time 
c field lines. The colour denotes the intensity of the field. All the simulations 

 

= 31, N r = 30. In all these simulations, the magnetic field is not evolved. 
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Figure 10. 3D rendering at 2726 yr of the model SLy4-M.1.4-B14-L2-alt . Top: Simulation with non-evolving magnetic field. The two panels show, from left to 
right, the temperature and the magnetic field lines. Bottom: Full magnetothermal simulation, which includes also the evolution of the magnetic field and Joule 
heating. The three panels show, from left to right, the temperature, the magnetic field lines, and the electric currents lines (related to the Ohmic heating). All the 
simulations adopt a mass of M = 1 . 4 M 
, the EOS SLy4, and a resolution of N r = 30 and N a = 31. 
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iew of the hotspots on the stellar surface may become periodically
bstructed. This results in a periodic modulation of the stellar X-ray
ux, which is eventually observable and is indeed observed in several
ources (see e.g. Kaspi & Beloborodov 2017 ; Esposito, Rea & Israel
021 ). 
Starting from our simulations, we compute the energy dependent

ux (or, equi v alently the phase-resolved spectrum) as detected by a
istant observer. This is an important step because it allows us to
ink the results of our simulations with quantities that can be directly
bserved. 
To this aim, we employ the ray-tracing code presented in Perna &

otthelf ( 2008 ) and Vigan ̀o et al. ( 2014 ) and generalized to work with
 non-axisymmetric temperature map. The ray-tracing code takes as
nput a temperature map from MATINS , and maps it via interpolation
nto an internal, equally spaced spherical coordinate grid. The
emperature map is used to calculate the local emission spectrum
n the surface of the NS. The phase dependent spectrum is computed
neglecting absorption from the interstellar medium) by integrating
he specific intensity allo v er the stellar surface (Page 1995 ): 

 ( E ∞ 

, γ ) = 

2 π

ch 

3 

R 

2 
∞ 

D 

2 
E 

2 
∫ 1 

0 
2 x d x 

∫ 2 π

0 

d φ

2 π
B ν[ T s ( θ ( x) , φ) , E ] . 

(15) 

ere, E and E ∞ 

denote, respectively, the energy of photons at the
tar surface and the redshifted energy detected by an observer at
nfinity. R ∞ 

is the radius of the star at infinity, D is the distance
rom the source, while the parameter γ represents its rotational
hase. We assume the local spectrum to be a blackbody B ν( T ), and
lso that the emission at the surface is isotropic. Both assumptions
NRAS 533, 201–224 (2024) 
eglect all the possible spectral and anisotropic effects introduced
y the passage of radiation trough the atmosphere of the NS, which
urther complicates the modelling (see e.g. section 2.3 of Özel
013 ). While we make this assumption for the sake of simplicity
n this first work and in order to highlight the dependence of the
ight curve on the temperature map, we note that the spectral and
nisotropic distortions introduced by the atmosphere are second
rder effects. The angles θ and φ in equation ( 15 ) are the latitude
nd longitude angles on the star surface measured relatively to the
xis aligned with the line of sight (LOS), while x ≡ sin δ, where
is the emission angle of the photon with respect to the normal to

he stellar surface. At a given latitude θ only the photons emitted
ith a given angle δ will reach the observer. In our ray-tracing code,

he relation between θ and δ is provided by the formula derived by
eloborodov ( 2002 ), which is valid for a Schwarzschild spacetime, 

 − cos θ = (1 − cos δ) 
(

1 − R s 

R 

)−1 
, (16) 

here R s and R are the Schwarzschild and the NS radius, respec-
ively. It is important to acknowledge that the equation presented
bo v e serv es as an approximation of the geodesic equation, and
ts accuracy may diminish for significant values of δ (refer to the
etailed discussion in La Placa et al. 2019 ). Nevertheless, within the
ontext of our specific application, where the range of δ is confined
o δ ≤ π/ 2, this equation maintains an accuracy level better than
 per cent , which pro v es to be satisfactory for our intended purposes,
hile significantly reducing the computational cost of the code. 
The flux in equation ( 15 ) depends on the orientation of the

emperature map with respect to the LOS, which also depends on
he phase γ . This orientation (hereafter geometry ) is defined by two
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Figure 11. Simulated observed emission from the MATINS run Sly4-M1.4- 
B14-L1 e v aluated at 2726 yr , for a source located at 4 kpc , negligible N H , and 
a geometry defined by the angles χ = ψ = 90 ◦. Top : Phase-energy diagram. 
The colour code denotes the photon flux. Red lines mark isocontour lines. 
Bottom : Bolometric flux as a function of the phase measured in erg/(s cm 

2 ). 
The label marks the pulsed fraction (PF). 
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Figure 12. Same as Fig. 11 but for the simulation Sly4-M1.4-B14-L2 . In the 
bottom panel coloured dots mark three different selected phases, coincident 
with the minimum (blue), the maximum (orange), and an intermediate (green) 
value of the flux. The orange curve represents the same run using an iron 
envelope model instead of the Gudmundsson envelope model. The coloured 
dots mark the minimum (red), maximum (purple), and an intermediate 
(bro wn) v alue of the flux. 
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ngles: ψ is the angle between the LOS and the rotation axis and
is the angle between the z -axis in MATINS and the rotation axis.

he phase-resolved spectrum can be calculated once ψ and χ are 
efined. 
Here, we present the phase-resolved spectrum for three selected 

ases: Sly4-M1.6-B14-L1 , Sly4-M1.4-B14-L2 , and Sly4-M1.4-B14- 
10 . For all the cases we chose the temperature map at t = 2726 yr ,
 geometry defined by ψ = χ = π/ 2, and a reference distance of
 = 4 kpc . In all the ray-tracing simulations, the resolution of the

rid is set to 150 points both in θ and φ directions. The temperature
ap obtained by MATINS is interpolated on this grid via a barycentric

oordinate interpolation. 
The first case that we present in Fig. 11 is the one referring to

he simulation Sly4-M1.4-B14-L1 . Here the top panel displays the 
hase-resolved spectrum, in an energy-phase plane. The colour code 
epresents the specific flux measured in photons / (s cm 

2 keV) , and the 
ed continuous lines mark iso-flux contours. The bottom panel shows 
he flux integrated over the energy range 0 . 1 − 10 keV , measured in
rg / (s cm 

2 ) . Since most of the emission occurs in this energy window, 
his flux coincides approximately with the bolometric thermal flux. 
he label here denotes the pulsed fraction (PF) that is the magnitude
f the pulsed emission, computed as the difference between the 
aximum and the minimum of the flux divided by the sum of these.
This run is characterized by a dipolar configuration of a purely

oloidal magnetic field. Here, the magnetic dipolar moment is 
oincident with the z-axis in MATINS . As such, the angle χ , in
his case, is the inclination angle, i.e. the angle between the rotation
nd the magnetic moment. The temperature map is characterized by 
 cold equatorial belt and hotter poles, which acts lik e tw o broad
ntipodal hotspots, centred on the magnetic axis. These features, 
long with the chosen geometry, are reflected on the pulsed profile,
hich shows two symmetric peaks within a single rotational phase. 
ith the chosen geometry, which is the one that maximizes the PF,

he LOS passes through the poles at γ = 0 , 0 . 5, where we have
he maximum of the emission, while the minima at γ = 0 . 25 , 0 . 75
oincide with the LOS pointing at the equatorial cold belt. Note that
n this specific case, due to the peak symmetry given by the magnetic
onfiguration and inclination, the spin period inferred by the X-ray 
ight curves would be half the real value. 
MNRAS 533, 201–224 (2024) 
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Figure 13. Surface brightness of the star projected on the observer plane at three different rotational phases. Top: Simulation with Gudmundsson envelope. 
Bottom: Simulation with the iron magnetized envelope. The rotational axis is horizontal in each image. The images refer to the three (per simulation) rotational 
phases highlighted in the right panel of Fig. 12 . The colour of the frame around each image matches the colour of the dot in the previous figure to which the 
image refers. Note that the phases in the top row and in the bottom row are close but not exactly equal (refer to Fig. 12 ). 
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In Fig. 12 , we display the same quantities as in Fig. 11 , but for the
ATINS simulation Sly4-M1.4-B14-L2 . This case is characterized by

 more complex magnetic field, which results in a temperature map
hat is no longer axisymmetric like the previous case. As we can see
rom the figure, the phase-resolved spectrum and the pulsed profile
how only a single slightly-asymmetric peak during the rotational
hase. The PF is higher than the previous case, reaching a value
f ∼ 15 per cent . In the bottom panel of the figure, we also show
orange curve) the pulsed profile for the variant of the same run,
omputed with the magnetized envelope of Potekhin et al. ( 2015 ).
or this case we note that, although the o v erall flux is lower, the PF

s slightly higher, and a second small peak appears in proximity of
he flux minimum. 

In order to illustrate the origin of the pulsed profiles, which are
ess straightforward to interpret than the previous one, we report in
ig. 13 the surface brightness of the star at three selected phases
orresponding to the minimum (left), the maximum (centre), and
n intermediate value of the flux (right). The surface brightness
as been computed by integrating the black-body specific intensity
nto the energy interval 0 . 1 –10 keV at each point of the visible
urface of the star and then projecting each point into the observer
aking into account the propagation of photons in a Schwarzschild
pacetime. In the top row we report the result for the standard
un, while in the bottom row we report the result for the variant
ith the magnetized envelope. From the figure, we can see that the
NRAS 533, 201–224 (2024) 
emperature map is characterized by several small spots of semi-
perture angle ∼ 10 − 15 ◦ and a bigger, brighter spot of semi-
perture angle ∼ 35 − 45 ◦. The latter, due to its enhanced size and
rightness, dominates the emission producing the peak at γ ∼ 0 . 5,
hen it is oriented face-on with respect to the observer. The minimum
f the emission in turn occurs at γ ∼ 0, when the big spot is
ompletely out of sight. Comparing the two runs characterized
y different envelopes we can appreciate how, in the case of the
agnetized envelope, the gradients in surface brightness ( i.e. in the

urface temperature) are larger with respect to the Gudmundsson
nvelope case; this is in agreement with the slightly higher PF
bserved in this case. Where the field is tangential to the surface,
he magnetized envelope model provides an enhanced screening;
ice versa when the field is radial, the surface temperature is higher
ith respect to the Gudmundsson case, as also reported in Dehman

t al. ( 2023b ). This is the case of the two quasi-antipodal hotspots
isible in the bottom row of Fig. 13 , which are hotter with respect
o the equi v alent regions in the top row. It is worth noticing that
he magnetized envelope enhances the temperature only for these
wo spots and not for the other existing hot regions. The reason is
hat these two spots are characterized by a field with a substantial
adial component, and as such they are poorly screened by the
agnetic envelope. On the other hand, the other hot areas have a

igh temperature not because of the field orientation but due to its
eak local intensity; the field ho we ver is tangential to the surface
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Figure 14. Same as Fig. 11 and Fig. 12 for the run Sly4-M1.4-B14-L10 . 
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n those locations, such that they are subjected to a higher screening
hen a magnetized envelope is used. 
Note that, unlike the dipolar case, in this case the z-axis does

ot pass through the hottest region. As such it is not guaranteed
hat this geometry ( ψ = χ = 90 ◦) is the one that maximizes the PF.
evertheless, we can see from Fig. 13 that since the widest and hottest

egion passes close to the centre of the figure at the maximum of the
ulse profile, while it completely disappears at the its minimum, it is
easonable to expect that this configuration may not be too far from
he one with highest PF. 

The final case, depicted in Fig. 14 , corresponds to the model Sly4-
1.4-B14-L10 . Similarly to the quadrupolar case, this particular 

cenario exhibits one peak that appears within a single rotational 
hase. Ho we ver, in this case the shape of the profile is more complex,
eflecting the more complex shape of the hot region, which can also be
ppreciated in the top right panel of Fig. 9 . Around γ ∼ 0 . 8 we notice
 step-like shape which has a shift in phase of �γ ∼ 0 . 5, with respect
o the peak. This particular profile suggests the presence of two hot
egions positioned at almost antipodal positions and characterized 
y different brightness levels. 
Comparing the PFs of the three cases presented here, it is worth
entioning that the Sly4-M1.4-B14-L10 configuration has the lowest 
F. This is due to the fact that this temperature map is characterized by
 high number of hot regions, so that while some of them are occulted
y the star rotation some other are revealed, thus reducing the PF. For
his reason, even if also in this case, like for the quadrupole one, the
hoice of ψ = χ = 90 ◦ may not necessarily be the one maximizing
he PF, we argue that the maximum PF is probably not too far from
he value reported here. 

The second case with the lowest PF, comparable to Sly4-M1.4- 
14-L10 , is the dipole. In this case the lo w v alue of the PF can be
scribed to the wideness of the polar hot regions which can never be
ompletely occulted, unlike for the quadrupolar case. 

To conclude, we consider the run Sly4-M1.4-B14-L10 , with the 
nclusion of the full magnetothermal evolution. Also for this run, we
onsider a temperature map at i.e. t = 2726 yr , which gives enough
ime for the magnetic field to experience some Hall and Ohmic
volution. The result is presented in Fig. 15 . The top and the middle
anel represent the phase-resolved spectrum expressed in photon 
ounts for the case with non-evolving (top) or evolving (middle) 
agnetic field. The bottom panel represents the pulsed profile of the

wo cases. Hereafter, we will refer to the first case as thermal case,
nd to the second case as magnetothermal case. In this plot, we can
otice two interesting features: first of all, as expected, the Ohmic
issipation contributes to increasing the surface temperature, and 
onsequently the flux, which increases by almost a factor of 5, while
he peak of the spectrum mo v es to higher energies. Secondly, there is
 phase shift of �γ ∼ 0 . 5 of the profile maximum between the two
ases, such that the peak of the pulsed profile in the case with the non-
volving field coincides with the minimum of the magnetothermal 
rofile. This shift denotes a switch in the hot regions with and without
he Ohmic dissipation, as already noted in the previous section. 
inally, we note that the magnetothermal case is characterized by 
 PF of ∼ 30 per cent , which is a value higher than the PFs of all
he other cases studied here, where the field is not evolving. 

 SUMMARY  

his work, together with Dehman et al. ( 2023a ) introduces MATINS
MAgneto-Thermal evolution of Isolated Neutron Star), a three- 
imensional code designed to investigate the secular magnetothermal 
ehaviour of an NS, featuring a self-consistent coupling between 
hermal and magnetic processes, a realistic star structure based 
n different possible cold dense matter EOS, and detailed local 
icrophysics. While the previous study by Dehman et al. ( 2023a )

escribed how the code solves the magnetic evolution equation with 
 particular emphasis on the cubed-sphere grid, our focus here is to
llustrate the formalism, testing and some applications of the thermal 
volution part. The results from the fully coupled induction and heat
iffusion equations have already been presented in Dehman et al. 
 2023c ), which considered a realistic magnetic field configuration 
erived from a proto-NS dynamo simulation (Reboul-Salze et al. 
021 ), along with the most updated envelope model (Potekhin et al.
015 ). 
The MATINS code utilizes a finite volume scheme to solve the

hermal evolution (energy conservation) equation in the cubed sphere 
rid coordinate system (Ronchi et al. 1996 ). The equation is solved
ia an implicit scheme, which is optimal to treat the stiffness of the
eutrino emissivity, and allows us to use larger time-steps, due to the
nconditional stability of the method. 
We included in our code a numerical implementation of the 
icrophysics that exploits the public code by Potekhin, 7 which 

rovides a detailed description of microphysical parameters in the 
uter and inner crust, and in the core of the NS, along with the
MNRAS 533, 201–224 (2024) 
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Figure 15. Phase-resolved spectrum and pulsed profile at t = 2726 yr of 
the simulation Sly4-M1.4-B14-L10 with the thermal evolution only and the 
coupled magnetothermal problem. Top : Phase-resolved spectrum with the 
non-evolving magnetic field. Middle : Phase-resolved spectrum with evolving 
magnetic field. Bottom : Pulsed profiles with non-evolving (blue) and evolving 
(orange) field. 
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nclusion of all the rele v ant neutrino emission processes in the crust
nd in the core. The structure of the NS is obtained by solving the
OV equation at zero temperature. This requires the choice of an EOS

hat can be selected from the public online data base CompOSE. 8 

We applied MATINS to various scenarios, including different
OSs and masses, and also to a case with a fully coupled magne-

othermal evolution. We observed the impact of different magnetic
eld configurations on the distribution of temperature inside the star
nd in particular on the interface between the envelope and the crust,
hich is directly related to the temperature map at the surface of

he star. We appreciated how the increasing complexity of the field
ranslates into the complexity of the temperature map, where field
onfigurations with small-scale structures result in the formation of
maller hotspots. 

Moreo v er, we coupled the output of MATINS to a general-
elativistic ray-tracing code to calculate the phase-dependent spec-
rum observed by a distant observer from a thermally emitting NS.
his code is essential to link the results provided by MATINS in term
f surface temperature maps with the observations. In particular, we
ho wed ho w the simulations discussed in this paper produce different
hase-resolved spectra, pulsed profiles, and pulsed fractions for a
iven orientation of the LOS with respect to the temperature map and
tar’s rotation axis (geometry). The few cases presented in the paper
epresent just a proof of concept of the synergy between our ray-
racing code and MATINS, and a more systematic study considering
 wider sample of simulations and different geometries will be left
or future work. 

In conclusion, by considering the interplay between thermal and
agnetic processes, MATINS provides a more comprehensive and

ealistic understanding of the complex thermal histories of NS. The
ersatility of the code in handling various scenarios, together with its
uccessful application in testing and simulations, offers promising
otential for advancing our knowledge of NS characteristics and their
volutionary history. In particular, it is an essential tool to simulate
nd fit simultaneously the timing properties (controlled by the dipolar
urface field; Vigan ̀o et al. 2013 ), the thermal luminosity, and the X-
ay light curves. 
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PPENDIX  A :  CUBED  SPHERE  G R I D :  METRI C  

N D  O P E R ATO R S  

n this section, we report some of the geometric elements and
perators for the cubed sphere grid that have been used in the
alculations throughout this work. All these results were originally
erived by Ronchi et al. ( 1996 ) and further complemented by
ehman et al. ( 2023a ), where we also adapted them to incorporate

elati vistic corrections o wing to spacetime curv ature, manifesting in
he form of the function e λ( r) . This function is the usual 

√ 

g rr of a
tatic spherically symmetric spacetime, whose metric writes as 

 s 2 = −e 2 ν( r) c 2 d t 2 + e 2 λ( r) d r 2 + r 2 d �, (A1) 

here e ν( r) is the lapse function and � is the solid angle. The
ependence of λ with the radius depends on the mass distribution
nside the star m ( r), since 

( r) = −1 

2 
ln 
[ 
1 − 2 Gm ( r) 

c 2 r 2 

] 
. (A2) 

The lapse function instead is determined by solving the TOV
quation (Oppenheimer & Volkoff 1939 ; Tolman 1939 ; Pons &
igan ̀o 2019 ). 
As in Ronchi et al. ( 1996 ), we considered a unitary vector basis

ˆ e r , ˆ e ξ , and ˆ e η. The metric of the cubed sphere writes as 

 ij = 

⎛ 

⎝ 

1 0 0 
0 1 − XY 

CD 

0 − XY 
CD 

1 

⎞ 

⎠ , (A3) 

hile the inverse metric as 

 

−1 
ij = 

⎛ 

⎜ ⎝ 

1 0 0 
0 C 2 D 

2 

δ
CDXY 

δ

0 CDXY 
δ

C 2 D 

2 

δ

⎞ 

⎟ ⎠ 

, (A4) 

here X , Y , C , D , and δ are functions of the angular coordinates ξ, η

efined as 

X( ξ ) = tan ( ξ ) , 

Y ( η) = tan ( η) , 

( ξ ) = 

√ 

1 + X 

2 ( ξ ) = 1 / cos ( ξ ) , (A5) 

( η) = 

√ 

1 + Y 

2 ( η) = 1 / cos ( η) , 

δ( ξ, η) = 1 + X 

2 ( ξ ) + Y 

2 ( η) . 

The (contravariant) components of the length infinitesimal element
rites as 

d l r = e λ( r) d r , 

 l ξ = 

2 rD 

δ

d ξ

cos 2 ξ
, (A6) 

 l η = 

2 rC 

δ

d η

cos 2 η
. 

he (covariant) components of the area elements are as follows: 

d A r = 

4 r 2 

δ3 / 2 
C 

2 D 

2 d ηd ξ , 

 A ξ = 

2 re λD 

δ1 / 2 
d rd η , (A7) 

 A η = 

2 re λC 

δ1 / 2 
d rd ξ , 
NRAS 533, 201–224 (2024) 
hile the volume is 

 V = e λ
4 r 2 C 

2 D 

2 

δ3 / 2 
d rd ηd ξ. (A8) 

The scalar product writes as 

a · b = a r b r + a ξ b ξ + a ηb η − XY 

CD 

(
a ξ b η + a ηb ξ

)
, (A9) 

here the last term reflects the non-orthogonality of the grid. Finally,
he vector product between two contravariant vector is another
ontravariant vector that reads: 

 a × b ) l = a i b j g kl e ijk = 

δ1 / 2 

CD 

(
a ξ b η − a ηb ξ

)
ˆ e r 

+ 

1 

δ1 / 2 

(
CD 

(
a ηb r − a r b η

) + XY 

(
a r b ξ − a ξ b r 

))
ˆ e ξ

+ 

1 

δ1 / 2 

(
XY 

(
a ηb r − a r b η

) + CD 

(
a r b ξ − a ξ b r 

))
ˆ e η , 

(A10) 

here e ijk = 

√ 

g ε ijk is the the cov ariant Le vi-Ci vita tensor, ε ijk is
he Le vi-Ci vita symbol, and g = det ( g ij ). 

The only spacial differential operator needed in this work is the
radient, which writes in his contravariant form as 

 

 

 f = e −λ( r) ∂ r f ̂  e r + 

1 

r 

(
D ∂ ξ f + 

XY 

D 

∂ ηf 
)

ˆ e ξ + 

+ 

1 

r 

(XY 

C 

∂ ξ f + C ∂ ηf 
)

ˆ e η . (A11) 

PPENDI X  B:  TIME  DI SCRETI ZATI ON:  
MPLICIT  M E T H O D  

n this appendix, we discuss the discretization of the heat diffusion
quation and the technique employed to solve it in MATINS . Let
s consider equation ( 6 ) for each of our ( i, p, j, k) cells, where
ereafter the four inde x es denote the radial distance, the patch and
he ξ and η directions, respectively. Applying Gauss’ theorem in the
ell volume V 

i,j ,k (note that the latter does not depend on the patch
), we can write the equation in its discretized form, approximating

he volume-integrals with the central values times the volume: 

V 

i,j ,k c v; i,p,j,k 

�t 
( ̃  T n + 1 

i,p,j,k − ˜ T n i,p,j,k ) + 

+ � i,p,j,k ( e 
2 νi F i,p,j,k ) = V 

i,j ,k e 2 νi ε̇i,p,j,k , (B1) 

here �t = t n + 1 − t n is the discretized time-step leading from step n
o n + 1, and the specific heat and neutrino emissi vities are e v aluated
ocally. Note that the redshift factors only depend on the radial
irection. Here, � i,p,j,k ( e 2 νi F i,p,j,k ) represents the net flux across
he volume and it is e v aluated along the cell surface A i,p,j,k , as
ollows: 

 i,p,j,k = 

∫ 
A i,p,j,k 

e 2 ν F · d A � 

� e 2 νi+ 1 / 2 F 

r 
i+ 1 / 2 ,p,j,k A r; i+ 1 / 2 ,j ,k + 

− e 2 νi−1 / 2 F 

r 
i−1 / 2 ,p,j,k A r; i−1 / 2 ,j ,k + 

+ e 2 νi 
(
F 

ξ
i,p,j+ 1 / 2 ,k A ξ ; i,j + 1 / 2 ,k + 

− F 

ξ
i,p,j−1 / 2 ,k A ξ ; i,j −1 / 2 ,k 

) + 

+ e 2 νi 
(
F 

η
i,p,j,k+ 1 / 2 A η; i,j ,k+ 1 / 2 + 

− F 

η
i,p,j,k−1 / 2 A η; i,j ,k−1 / 2 

)
, (B2) 

here the half-integer values of the indices denotes quantities
 v aluated at the cell interfaces. Once discretized, it is possible to

http://dx.doi.org/10.1111/j.1365-2966.2010.17827.x
http://dx.doi.org/10.1016/j.jcp.2021.110866
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otice that the net flux can be expressed as a linear combination
f the temperature within the cell and the temperature in the first
eighbouring cells, such that we can express it in matrix form: 

 i,p,j,k = C 

α,p,β,γ

i,p,j,k 
˜ T α,p,β,γ , (B3) 

here the inde x es α, β, γ can assume the values α ∈ [ i − 1 , i, i + 1],
∈ [ j − 1 , j, j + 1], and γ ∈ [ k − 1 , k, k + 1]. Equation ( B1 ) is

olved using an implicit backward Euler method, which is partic- 
larly suitable to handle the stiff terms appearing in the neutrino 
ooling and to increase the time-step preserving the stability of the 
olution. This implies that the flux is written in terms of the updated
emperatures, namely those calculated at the time-step n + 1: 

˜ T n + 1 
i,p,j,k + 

�t 

c v; i,p,j,k 

� i,p,j,k ( ̃  T n + 1 
α,p,β,γ ) 

V 

i,j ,k 
= 

= 

˜ T n i,p,j,k + 

�t 

c v; i,p,j,k 

e 2 νi ε̇i,p,j,k . (B4) 

earranging the cells’ temperature in a 6 N r ( N a + 2) 2 -dimensional 9 

ector ˜ T n + 1 
l , we can re-write equation ( B4 ) in a matrix form as 

ˆ  αl ˜ T n + 1 
α = v l ( ̃  T n ) , (B5) 

here the source v l contains terms of the discretized equation which 
epend only on the local old temperatures, and whose explicit form,
long with that of the matrix ˆ m 

α
l , is reported in Appendix E . This

orresponds to expressing our differential equation as a system of 
 N r ( N a + 2) 2 algebraic equations, whose unknown values are the
emperatures in each cell at the time-step n + 1. In our code, we solve
he system with the aid of the public library LAPACK (Anderson et al.
999 ). 
The right-hand side of equation ( B5 ) corresponds to the old

emperatures plus the source term (as in the right-hand side of
quation B4 ), which includes the Joule heating and the neutrino 
missivity. The latter contribution has a steep dependence with 
emperature, making the source term a stiff term in our equation. 
n order to handle it, it is convenient to perform a linearization,
riting: 

˙i,p,j,k ( T 
n + 1 
l ) � ε̇i,p,j,k ( T 

n 
l ) + 

( d ̇ε

d T 

)
i,p,j,k 

e −νi 
(

˜ T n + 1 
l − ˜ T n l 

)
(B6) 

here the deri v ati ves are calculated at the old temperatures. The
erms multiplying T n + 1 in the previous equation are added to the 

atrix diagonal: 

ˆ  αl → ˆ m 

α
l − δα

l 

�t 

c v; i,p,j,k 

e νi 

( d ̇ε

dT 

)
i,p,j,k 

, (B7) 

here δα
l is a Kronecker delta, while all the other terms are included

n the vector v l ( ̃  T n ), which is written as 

( ̃  T n l ) = 

[ 
1 − �t 

c v; i,p,j,k 

e νi 

( d ̇ε

dT 

)
i,p,j,k 

] 
˜ T n l + 

+ 

�t 

c v; i,p,j,k 

e 2 νi ε̇i,p,j,k ( T 
n 
l ) . (B8) 

PPEN D IX  C :  G H O S T  CELLS  A N D  PATC H  

D G E S  

s we mentioned in Section 2.3 we introduced a layer of ghost
ells at each patch interface. The temperature of these extra cells is
 N a + 2 instead of N a because the temperature of the ghost cells (two layers 
f them in each angular direction) must be included. 

f
V  

s
t

sed to calculate the heat flux through the cells next to the patch
dges; consequently they must enter in equation ( B5 ). While the
ther temperatures are determined by a physical equation (equation 
 ), the temperatures in the ghost cells are determined by a linear
nterpolation with the temperature of two cells in the neighbouring 
atch. This results in an equation that is actually a constrain and
rites as 

 

n + 1 
ghost ,j −

(
1 − W j 

)
T n + 1 

j − W j T 
n + 1 
j ′ = 0 . (C1) 

Here, T n + 1 
ghost, j is the temperature of a ghost cell a given patch,

 

n + 1 
j and T n + 1 

j ′ are the temperatures of two non-ghost cell in the
eighbouring patch. The index j is the index of the coordinate parallel
o the edge, while j ′ = j + 1 for j ≤ N a / 2 and j ′ = j − 1 for j >
 a / 2. W j are the weights defined as 

 j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 
2 

(
1 − p m 

j−1 −p o 
j+ 1 

p o 
j+ 1 −p o 

j−1 

)
j < ( N a + 1) / 2 

0 j = ( N a + 1) / 2 
1 
2 

(
1 − p m 

j+ 1 −p o 
j−1 

p o 
j+ 1 −p o 

j−1 

)
j > ( N a + 1) / 2 , 

(C2) 

here p 

m 

j and p 

o 
j are the ghost cell coordinates, defined in section

.6 of Dehman et al. ( 2023a ). Equation C1 basically states that the
emperature of the ghost cell of a given patch is the linear combination
f the temperature of the cell at the edge of the neighbouring patch
ith the same parallel (to the edge) coordinate and the temperature
f the cell next to it towards the patch centre (to have an insight
he reader can refer to fig. 2 of Dehman et al. ( 2023a )). Finally,
he term W j represents the weights of the linear interpolation and it
elong to the range [0,1], where W j = 0 at the centre of the edge
 j = N a / 2 , N a / 2 + 1) and W j = 1 at the edge extremes ( j = 1 , N a ).
n this way, at the centre of the edge T n + 1 

ghost,j takes the contribution
nly from a single cell, while at the extremes it correspond to the
umerical average of the two cells. 
A separate treatment is necessary for the cells with j, k = 0 , N a +

, which corresponds to the ghost corner of the patch. These cells
re special because they are ghost cells with respect to two different
dges, namely, in our approach, their temperature must be coupled 
o temperature of two different patches. Similarly to equation ( C1 )
he temperature of the corner ghost cell is written as 

 

n + 1 
ghost, corner −

1 

2 
T n + 1 

1 − 1 

2 
T n + 1 

2 = 0 , (C3) 

here T n + 1 
1 and T n + 1 

2 are temperatures of the non-ghost cells at
he corner of the two patches adjacent to the original patch at the
iv en corner. F or e xample, if we are considering the ghost corner
, k = N a + 1 of patch I , T n + 1 

1 and T n + 1 
2 are the temperatures in

he cells j = N a , k = 1 of patch V and j = 1 , k = N a of patch I I ,
espectively. 

PPENDI X  D :  B O U N D  A R  Y  C O N D I T I O N S  

ur set-up requires the definition of boundary conditions on the 
nnermost and the outermost radial layers, represented by the 
nterfaces with the core and the env elope, respectiv ely. The core is
escribed by a single radial layer because, due to its high conductivity, 
t becomes perfectly isothermal (precisely, T e ν( r) is constant) after 
t most only a couple of centuries, a time-scale that is irrele v ant
or our purposes and without observational constraints (see e.g. 
igan ̀o et al. 2021 ). For this reason, in our code, we consider a

ingle redshifted temperature for the core, which evolves according 
o the ratio between the volume-integrated sources and heat capacity, 
MNRAS 533, 201–224 (2024) 
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nd accounting for the core-crust flux: 

d 

d t 
( e νT core ) = 

∫ R core 

0 ε̇ν( T core ) e 2 νr 2 d r ∫ R core 

0 c v ( T core ) r 2 d r 
+ 

− � CC 

4 π
∫ R core 

0 c v ( T core ) r 2 d r 
, (D1) 

here the neutrino emissivity and the specific heat are integrated
 v er the entire core volume, exploiting the fact that they depend only
n the radial coordinate. The flux term � CC is the net flux at the
ore-crust interface, written as 

 

CC ( ̃  T n core ) = 

∑ 

jkp 

F 

r 
3 / 2 ,p,j,k A r;3 / 2 ,p,j,k , (D2) 

hich is equation ( B2 ) integrated along the whole crust-core inter-
ace, where we consider only the radial contribution of the flux at
his boundary. Equation D1 is solved by an implicit backward Euler
ethod. Ho we ver, it is worth noticing that the flux � 

CC is treated
xplicitly. The reason is that in this term the flux does not depend
nly on the temperature of the core, but also on the temperature of the
ells in the innermost crustal layer ( i = 2). We observed empirically
y refining the temporal resolution that this approach, alas not fully
elf-consistent, has a negligible effect on the solution. 

From an operational point of view, we treat the cells in the
nnermost layer as ghost cells, in the sense that like the ghost cells
t the border of the patches (see Appendix C ), their temperature is
etermined by a constrain, which is written as 

 

n + 1 
1 ,p,j,k − T n + 1 

core = 0 , (D3) 

here T n + 1 
core is determined by the solution of equation ( D1 ). 

The external boundary condition consists in the addition of a
ource term, describing the emission from the stellar surface. Such
mission is assumed for simplicity to be a blackbody with surface
emperature T s and is given by the Stefan–Boltzmann law (written
n a discretized form) 

( T n + 1 
b ) = σsb A r; N r + 1 / 2 ,p,j,k T 

4 
s ( T 

n + 1 
b ) , (D4) 

here S is the luminosity emitted by the radiating area A at
emperature T s , and σsb is the Stefan-Boltzmann constant. 

It is worth noticing that here the surface temperature T s is not
he temperature in the outermost layer of the computational domain,
orresponding to the crust-envelope interface and denoted by T b . T s is
nstead the temperature at the top of the envelope. The envelope is not
art of our computational domain, since in this region the gradients
f temperature and density are so steep and the timescales so short
hat including this zone makes the thermal evolution computationally
rohibitive to tackle. Instead, in MATINS we utilize envelope models,
hich are analytic ef fecti ve T s = T s ( T b , B ) relations, obtained by
tting stationary solutions of heat diffusion in the envelope models
omputed with different T b and B . Most of the simulations presented
n this paper utilize the envelope model provided by Gudmundsson
t al. ( 1983 ): 

 s = 10 6 K ×
[ g 0 . 455 

14 ( T b / 10 8 K) 

1 . 288 

] 1 / 1 . 82 
, (D5) 

here g 14 is the surface gravity in units of 10 14 g cm s −2 . We chose
his model because it is particularly simple, not inclusive of the
ependence on the magnetic field, which makes it straightforward to
nterpret the cooling curve in terms of the T b profile. Nevertheless,

ATINS accounts also for several other models, including magne-
ized envelopes with heavy element or light element composition. In
ddition to Gudmundsson model, we provide also a run characterized
NRAS 533, 201–224 (2024) 
y the magnetized iron envelope presented in Potekhin et al. ( 2015 ).
o see the impact of the envelope model on the cooling curve, we
efer to Dehman et al. ( 2023b ). 

The term in equation ( D4 ) is treated implicitly similarly to the
eutrino cooling: the source term, e v aluated at T n + 1 , is linearized
nd the terms dependent on T n are included in the source vector v l ,
hile those dependent on T n + 1 are included in the diagonal elements
f the matrix ˆ m 

α
l : 

( ̃  T n l ) → v( ̃  T n l ) − �t 

c v; i,p,j,k V i,j ,k 

e νi 

( d S 

d T 

)
i,p,j,k 

˜ T n l + 

+ 

�t 

c v; i,p,j,k V i,j ,k 

e 2 νi S( T n l ) (D6) 

nd 

ˆ  αl → ˆ m 

α
l − δα

l 

�t 

c v; i,p,j,k V i,j ,k 

e νi 

( d S 

d T 

)
i,p,j,k 

. (D7) 

t is worth noticing that while such implicit treatment is essential for
he neutrino emissivity, due to the strong stiffness of this term, for
he photon luminosity it just represent a second order correction that
ives little difference compared to an explicit treatment. 

PPENDI X  E:  MATRI X  ELEMENTS  

n this Appendix, we write e xtensiv ely the matrix elements K 

ij and
 

α
l and we show how to derive them. 
First of all we start from equation ( 11 ) and we explicit all the

hree term on the right hand side of the equation. We have first the
emperature gradient, which according to equation ( A11 ) writes in
ubed sphere grid as 

 

 

 

˜ T = e −λ( r) ∂ r ˜ T ̂  e r + 

1 

r 

(
D ∂ ξ ˜ T + 

XY 

D 

∂ η ˜ T 
)

ˆ e ξ + 

+ 

1 

r 

(XY 

C 

∂ ξ ˜ T + C ∂ η ˜ T 
)

ˆ e η. (E1) 

The second term of interest is the scalar product b · ∇ 

∇ ∇ 

˜ T , which
rites as 

 b · ∇ 

∇ ∇ 

˜ T ) = b r e −λ( r) ∂ r ˜ T + 

1 

r 

[
D −

(
XY 

C 

)2 1 

D 

]
b ξ∂ ξ ˜ T + (E2) 

+ 

1 

r 

[ 
C −

(XY 

D 

)2 1 

C 

] 
b η∂ η ˜ T . (E3) 

Finally, we report the three component of the vector product b ×
 

 

 

˜ T in the last term: 

 b × ∇ 

∇ ∇ 

˜ T ) r = 

√ 

δ

CDr 

[ (
b ξ

XY 

C 

− b ηD 

)
∂ ξ ˜ T + 

+ 

(
b ξC − b η

XY 

D 

)
∂ η ˜ T 

] 
, (E4) 

 b × ∇ 

∇ ∇ 

˜ T ) ξ = 

1 √ 

δ

[(
CDb η − XY b ξ

)
e −λ( r) ∂ r ˜ T 

− δ

rD 

b r ∂ η ˜ T 

]
, (E5) 

 b × ∇ 

∇ ∇ 

˜ T ) η = 

1 √ 

δ

[(
XY b η − CDb ξ

)
e −λ( r) ∂ r ˜ T 

+ 

δ

rC 

b r ∂ ξ ˜ T 

]
. (E6) 

It is useful to write the three terms in equation ( 11 ) as follows 

 ⊥ 

∇ 

∇ ∇ 

˜ T = A ∂ r ˜ T e r + ( B ∂ ξ ˜ T + E ∂ η ˜ T ) ̂ e ξ + ( F ∂ ξ ˜ T + G ∂ η ˜ T ) ̂ e η, 

(E7) 
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 ⊥ 

( ω B τ0 ) 
2 ( b · ∇ 

∇ ∇ 

˜ T ) b = ( H b r ∂ r ˜ T + I b r ∂ ξ ˜ T + J b r ∂ η ˜ T ) e r 
+ ( H b ξ∂ r ˜ T + I b ξ∂ ξ ˜ T + J b ξ∂ η ˜ T ) ̂ e ξ
+ ( H b η∂ r ˜ T + I b η∂ ξ ˜ T + J b η∂ η ˜ T ) ̂ e η, (E8) 

 ⊥ 

( ω B τ0 )( b × ∇ 

∇ ∇ 

˜ T ) = ( K ∂ ξ ˜ T + L ∂ η ˜ T ) e r + 

+ ( M ∂ r ˜ T − N ∂ η ˜ T ) ̂ e ξ + 

+ ( O ∂ r ˜ T + P ∂ ξ ˜ T ) ̂ e η, (E9) 

here the terms A, B, E, F , G, H , I , J , K, L, M, N, O, P are the
ollowing functions: 

A = k ⊥ 

e −λ( r) B = 

k ⊥ 

D 

r 
, 

E = 

k ⊥ 

XY 

rD 

F = 

k ⊥ 

XY 

rC 

= 

ED 

C 

, 

G = 

k ⊥ 

C 

r 
H = k ⊥ 

( ω B τ0 ) 
2 e −λ( r) b r , 

I = k ⊥ 

( ω B τ0 ) 
2 b 

ξ

r 

[ 
D−

(XY 

C 

)2 1 

D 

] 
, 

J = k ⊥ 

( ω B τ0 ) 
2 b 

η

r 

[ 
C −

(XY 

D 

)2 1 

C 

] 
, 

K = 

√ 

δk ⊥ 

( ω B τ0 ) 

CDr 

(
b ξ

XY 

C 

− b ηD 

)
, 

L = 

√ 

δk ⊥ 

( ω B τ0 ) 

CDr 

(
b ξC − b η

XY 

D 

)
, 

M = 

k ⊥ 

( ω B τ0 ) √ 

δe λ( r) 
( CDb η − XY b ξ ) N = k ⊥ 

( ω B τ0 ) 

√ 

δ

rD 

b r , 

O = 

k ⊥ 

( ω B τ0 ) √ 

δe λ( r) 
( XY b η − CDb ξ ) P = k ⊥ 

( ω B τ0 ) 

√ 

δ

rC 

b r . (E10) 

It is straightforward to show that the matrix elements K 

ij in 
quation ( 12 ) are 

 

ij = 

⎛ 

⎝ 

A + H b r I b r + K J b r + L 

H b ξ + M B + I b ξ E − N + J b ξ

H b η + O F + P + I b η G + J b η

⎞ 

⎠ . (E11) 

oncerning the matrix elements m 

α
l in equation ( B5 ), the first step

s to consider the net flux in equation ( B2 ) and make explicit
ts dependence on the temperature. In its discretized form this 
quation writes as 

 i,p,j,k = e 2 νi+ 1 / 2 F 

r 
i+ 1 / 2 ,p,j,k A r; i+ 1 / 2 ,j ,k + 

− e 2 νi−1 / 2 F 

r 
i−1 / 2 ,p,j,k A r; i−1 / 2 ,j ,k + 

+ e 2 νi 
(
F 

ξ
i,p,j+ 1 / 2 ,k A ξ ; i,j + 1 / 2 ,k + 

− F 

ξ
i,p,j−1 / 2 ,k A ξ ; i,j −1 / 2 ,k 

) + 

+ e 2 νi 
(
F 

η

i,p,j,k+ 1 / 2 A η; i,j ,k+ 1 / 2 + 

− F 

η

i,p,j,k−1 / 2 A η; i,j ,k−1 / 2 

)
, (E12) 

here the six terms on the right-hand side are the contributions from
he six faces of the cell. We can now write explicitly the discretized
uxes in the previous equation exploiting equation ( 12 ). We e v aluate

he temperature deri v ati ves as cell centred difference between the
alues at the first neighbours. They are located either at the centres
for the deri v ati ves associated to the direction normal to the surface,
amely the diagonal terms of the conductivity) or at the middle of
he edges of the 3D cells (associated to the transverse conductivity, 
amely the off-diagonal terms). The latter temperatures are obtained 
s the average between the values at the centres of the four closest
ells. The expressions that we obtain are the following: 
e νi+ 1 / 2 F 

r 
i+ 1 / 2 ,j ,k = 

− K 

rr 
i+ 1 / 2 ,j ,k 

˜ T i+ 1 ,j ,k − ˜ T i,j ,k 

r i+ 1 − r i 
+ 

− K 

rξ
i+ 1 / 2 ,j ,k 

˜ T i+ 1 ,j+ 1 ,k + 

˜ T i,j+ 1 ,k − ˜ T i+ 1 ,j−1 ,k − ˜ T i,j−1 ,k 

4( ξj+ 1 / 2 − ξj−1 / 2 ) 
+ 

− K 

rη
i+ 1 / 2 ,j ,k 

˜ T i+ 1 ,j ,k+ 1 + 

˜ T i,j ,k+ 1 − ˜ T i+ 1 ,j ,k−1 − ˜ T i,j ,k−1 

4( ηk+ 1 / 2 − ηk−1 / 2 ) 
(E13) 

e νi−1 / 2 F 

r 
i−1 / 2 ,j ,k = 

− K 

rr 
i−1 / 2 ,j ,k 

˜ T i,j ,k − ˜ T i−1 ,j ,k 

r i − r i−1 
+ 

− K 

rξ
i−1 / 2 ,j ,k 

˜ T i,j+ 1 ,k + 

˜ T i−1 ,j+ 1 ,k − ˜ T i,j−1 ,k − ˜ T i−1 ,j−1 ,k 

4( ξj+ 1 / 2 − ξj−1 / 2 ) 
+ 

− K 

rη
i−1 / 2 ,j ,k 

˜ T i,j ,k+ 1 + 

˜ T i−1 ,j ,k+ 1 − ˜ T i,j ,k−1 − ˜ T i−1 ,j ,k−1 

4( ηk+ 1 / 2 − ηk−1 / 2 ) 
(E14) 

e νi F 

ξ
i,j+ 1 / 2 ,k = 

− K 

ξr 
i,j+ 1 / 2 ,k 

˜ T i+ 1 ,j+ 1 ,k + 

˜ T i+ 1 ,j ,k − ˜ T i−1 ,j+ 1 ,k − ˜ T i−1 ,j ,k 

4( r i+ 1 / 2 − r i−1 / 2 ) 
+ 

− K 

ξξ
i,j+ 1 / 2 ,k 

˜ T i,j+ 1 ,k − ˜ T i,j ,k 

ξj+ 1 − ξj 

+ 

− K 

ξη
i,j+ 1 / 2 ,k 

˜ T i,j+ 1 ,k+ 1 + 

˜ T i,j ,k+ 1 − ˜ T i,j+ 1 ,k−1 − ˜ T i,j ,k−1 

4( ηk+ 1 / 2 − ηk−1 / 2 ) 
(E15) 

e νi F 

ξ
i,j−1 / 2 ,k = 

− K 

ξr 
i,j−1 / 2 ,k 

˜ T i+ 1 ,j ,k + 

˜ T i+ 1 ,j−1 ,k − ˜ T i−1 ,j ,k − ˜ T i−1 ,j−1 ,k 

4( r i+ 1 / 2 − r i−1 / 2 ) 
+ 

− K 

ξξ
i,j−1 / 2 ,k 

˜ T i,j ,k − ˜ T i,j−1 ,k 

ξj − ξj−1 
+ 

− K 

ξη

i,j−1 / 2 ,k 

˜ T i,j ,k+ 1 + 

˜ T i,j−1 ,k+ 1 − ˜ T i,j ,k−1 − ˜ T i,j−1 ,k−1 

4( ηk+ 1 / 2 − ηk−1 / 2 ) 
(E16) 

e νi F 

η
i,j ,k+ 1 / 2 = 

− K 

ηr 
i,j ,k+ 1 / 2 

˜ T i+ 1 ,j ,k+ 1 + 

˜ T i+ 1 ,j ,k − ˜ T i−1 ,j ,k+ 1 − ˜ T i−1 ,j ,k 

4( r i+ 1 / 2 − r i−1 / 2 ) 
+ 

− K 

ηξ

i,j ,k+ 1 / 2 

˜ T i,j+ 1 ,k+ 1 + 

˜ T i,j+ 1 ,k − ˜ T i,j−1 ,k+ 1 − ˜ T i,j−1 ,k 

4( ξj+ 1 / 2 − ξj−1 / 2 ) 
+ 

− K 

ηη
i,j ,k+ 1 / 2 

˜ T i,j ,k+ 1 − ˜ T i,j ,k 

ηk+ 1 − ηk 

(E17) 

e νi F 

η

i,j ,k−1 / 2 = 

− K 

ηr 
i,j ,k−1 / 2 

˜ T i+ 1 ,j ,k + 

˜ T i+ 1 ,j ,k−1 − ˜ T i−1 ,j ,k − ˜ T i−1 ,j ,k−1 

4( r i+ 1 / 2 − r i−1 / 2 ) 
+ 

− K 

ηξ
i,j ,k−1 / 2 

˜ T i,j+ 1 ,k + 

˜ T i,j+ 1 ,k−1 − ˜ T i,j−1 ,k − ˜ T i,j−1 ,k−1 

4( ξj+ 1 / 2 − ξj−1 / 2 ) 
+ 

− K 

ηη
i,j ,k−1 / 2 

˜ T i,j ,k − ˜ T i,j ,k−1 

ηk − ηk−1 
. (E18) 

From these expressions, we can see that the net flux in a given
ell � i,j ,k depends on the temperatures of the cell itself (with indices
 i, j, k)), at the 6 first neighbours (e.g. ( i + 1 , j, k), ( i, j − 1 , k) etc.),
t the 12 second neighbours (e.g. ( i − 1 , j, k + 1), ( i, j − 1 , k −
)), but not on the third neighbours (e.g. ( i − 1 , j + 1 , k + 1), ( i −
 , j − 1 , k − 1) etc.) or even further cells (e.g. ( i + 2 , j, k) etc.);
uch that in total each equation to advance T i,j ,k couples 19 values
f temperatures. 
MNRAS 533, 201–224 (2024) 
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We now introduce the following quantities, which will be used to
implify our notation: 

Z 

rr 
i,j ,k = 

e νi+ 1 / 2 K 

rr 
i+ 1 / 2 ,j ,k A r; i+ 1 / 2 ,j ,k 

r i+ 1 − r i 
, (E19) 

Z 

ξξ
i,j ,k = 

e νi K 

ξξ
i,j+ 1 / 2 ,k A ξ ; i,j + 1 / 2 ,k 

ξj+ 1 − ξj 

, (E20) 

Z 

ηη
i,j ,k = 

e νi K 

ηη
i,j ,k+ 1 / 2 A η; i,j ,k+ 1 / 2 

ηk+ 1 − ηk 

, (E21) 

Z 

rξ
i,j ,k = 

1 

4 

e νi+ 1 / 2 K 

rξ
i+ 1 / 2 ,j ,k A r; i+ 1 / 2 ,j ,k 

ξj+ 1 / 2 − ξj−1 / 2 
, (E22) 

Z 

rη
i,j ,k = 

1 

4 

e νi+ 1 / 2 K 

rη
i+ 1 / 2 ,j ,k A r; i+ 1 / 2 ,j ,k 

ηk+ 1 / 2 − ηk−1 / 2 
, (E23) 

Z 

ξr 
i,j ,k = 

1 

4 

e νi K 

ξr 
i,j+ 1 / 2 ,k A ξ ; i,j + 1 / 2 ,k 

r i+ 1 / 2 − r i−1 / 2 
, (E24) 

Z 

ξη
i,j ,k = 

1 

4 

e νi K 

ξη

i,j+ 1 / 2 ,k A ξ ; i,j + 1 / 2 ,k 

ηk+ 1 / 2 − ηk−1 / 2 
, (E25) 

Z 

ηr 
i,j ,k = 

1 

4 

e νi K 

ηr 
i,j ,k+ 1 / 2 A η; i,j ,k+ 1 / 2 

r i+ 1 / 2 − r i−1 / 2 
, (E26) 

Z 

ηξ
i,j ,k = 

1 

4 

e νi K 

ηξ
i,j ,k+ 1 / 2 A η; i,j ,k+ 1 / 2 

ξj+ 1 / 2 − ξj−1 / 2 
, (E27) 

nd the common prefactor appearing in equation ( B4 ): 

 i,j ,k = 

�t 

c v; i,j ,k V 

i,j ,k 
. (E28) 

n this way, the matrix elements m 

α
l in equation ( B5 ) are written as 

m i,p,j,k = 1 + H i,j ,k ( Z 

rr 
i,j ,k + Z 

rr 
i−1 ,j ,k + Z 

ξξ
i,j ,k + 

+ Z 

ξξ
i,j−1 ,k + Z 

ηη
i,j ,k + Z 

ηη
i,j ,k−1 ) , 

m i+ 1 ,p,j,k = H i,j ,k ( −Z 

rr 
i,j ,k − Z 

ξr 
i,j ,k + Z 

ξr 
i,j−1 ,k + 

−Z 

ηr 
i,j ,k + Z 

ηr 

i,j ,k−1 ) , 

m i,p,j+ 1 ,k = H i,j ,k ( −Z 

ξξ
i,j ,k − Z 

rξ
i,j ,k + Z 

rξ
i−1 ,j ,k + 

−Z 

ηξ
i,j ,k + Z 

ηξ
i,j ,k−1 ) , 

m i,p,j,k+ 1 = H i,j ,k ( −Z 

ηη
i,j ,k − Z 

rη
i,j ,k + Z 

rη
i−1 ,j ,k + 

−Z 

ξη
i,j ,k + Z 

ξη

i,j−1 ,k ) , 

m i−1 ,p,j,k = H i,j ,k ( −Z 

rr 
i−1 ,j ,k + Z 

ξr 
i,j ,k − Z 

ξr 
i,j−1 ,k + 

+ Z 

ηr 
i,j ,k − Z 

ηr 
i,j ,k−1 ) , 

m i,p,j−1 ,k = H i,j ,k ( −Z 

ξξ
i,j−1 ,k + Z 

rξ
i,j ,k − Z 

rξ
i−1 ,j ,k + 

+ Z 

ηξ
i,j ,k − Z 

ηξ

i,j ,k−1 ) , 

m i,p,j,k−1 = H i,j ,k ( −Z 

ηη
i,j ,k−1 + Z 

rη
i,j ,k − Z 

rη
i−1 ,j ,k + 

+ Z 

ξη
i,j ,k − Z 

ξη
i,j−1 ,k ) , 
NRAS 533, 201–224 (2024) 
m i−1 ,p,j−1 ,k = H i,j ,k ( −Z 

rξ
i−1 ,j ,k − Z 

ξr 
i,j−1 ,k ) 

m i−1 ,p,j,k−1 = H i,j ,k ( −Z 

rη
i−1 ,j ,k − Z 

ηr 
i,j ,k−1 ) , 

m i−1 ,p,j,k+ 1 = H i,j ,k ( Z 

ηr 
i,j ,k + Z 

rη
i−1 ,j ,k ) , 

m i−1 ,p,j+ 1 ,k = H i,j ,k ( Z 

ξr 
i,j ,k + Z 

rξ
i−1 ,j ,k ) , 

m i,p,j−1 ,k−1 = H i,j ,k ( −Z 

ξη
i,j−1 ,k − Z 

ηξ
i,j ,k−1 ) , 

m i,p,j−1 ,k+ 1 = H i,j ,k ( Z 

ηξ
i,j ,k + Z 

ξη
i,j−1 ,k ) , 

m i,p,j+ 1 ,k−1 = H i,j ,k ( Z 

ξη
i,j ,k + Z 

ηξ
i,j ,k−1 ) , 

m i,p,j+ 1 ,k+ 1 = H i,j ,k ( −Z 

ξη
i,j ,k − Z 

ηξ
i,j ,k ) , 

m i+ 1 ,p,j−1 ,k = H i,j ,k ( Z 

rξ
i,j ,k + Z 

ξr 
i,j−1 ,k ) , 

m i+ 1 ,p,j,k−1 = H i,j ,k ( Z 

rη
i,j ,k + Z 

ηr 
i,j ,k−1 ) , 

m i+ 1 ,p,j,k+ 1 = H i,j ,k ( −Z 

rη
i,j ,k − Z 

ηr 
i,j ,k ) , 

m i+ 1 ,p,j+ 1 ,k = H i,j ,k ( −Z 

rξ
i,j ,k − Z 

ξr 
i,j ,k ) . (E29) 

n the abo v e notation of the matrix, we have to remember that the
ndices are not those of the matrix (which is 2D) but represent the
ndices of the cell, whose temperature the matrix element multiplies,
amely they identify the matrix index α in equation ( B5 ), while the
ther index l refers to the cell ( i, p, j, k). In other words, for example
he matrix element m i+ 1 ,p,j,k couples the cell ( i, p, j, k) with its first
eighbour ( i + 1 , p, j, k), while the element m i+ 1 ,p,j−1 ,k couples
ts second neighbour ( i + 1 , p, j − 1 , k). The horizontal lines in
he previous list of equations separate the couplings with the point
tself, the first neighbours and the second neighbours. We also stress
hat these matrix elements are dimensionless and they satisfy the
ollowing identities, for each i, j, k : 

m i,p,j,k + m i−1 ,p,j,k + m i+ 1 ,p,j,k + m i,p,j−1 ,k + 

+ m i,p,j+ 1 ,k + m i,p,j,k−1 + m i,p,j,k+ 1 = 1 , 

m i−1 ,p,j−1 ,k + m i+ 1 ,p,j−1 ,k + m i−1 ,p,j+ 1 ,k + 

+ m i+ 1 ,p,j+ 1 ,k + m i,p,j−1 ,k−1 + m i,p,j+ 1 ,k−1 + 

+ m i,p,j−1 ,k+ 1 + m i,p,j+ 1 ,k+ 1 = 0 , (E30) 

hich means that, by construction, the sum of all contributions to the
atrix elements is exactly 1 (this is not true anymore if a linearized

ource is brought in the matrix), and the sum of the contributions
rom all the second neighbours are 0. 

PPENDI X  F:  I NI TI AL  MAGNETI C  FIELD  A N D  

NPUT  PA R A M E T E R S  O F  O U R  SI MULATIO NS  

n this section, we detail the formalism used to define the magnetic
eld initial configuration and, for the sake of reproducibility, the

nput parameters that define the configurations presented in Table 1
n Section 4 . 

Generally, a magnetic field B can be decomposed into a poloidal
omponent B pol and a toroidal component B tor , which can be
xpressed via two scalar functions � ( t, x ) and �( t, x ) as follows: 

B pol = ∇ × (∇ × � k 
)
, 

B tor = ∇ × � k , (F1) 

here k is an arbitrary vector, which in our coordinate system
s conveniently identified with the radial versor k = r . To define
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Table F1. This table includes the input parameters specifying the initial magnetic field configuration for each of the simulations already presented in Table 1 . 
The columns represent the name of the simulation, the poloidal and toroidal normalization parameter, the value of the weight φlm of the spherical harmonic � lm 

for the poloidal function, and the value of the weight ψ lm of the spherical harmonic � lm for the toroidal function. 

Name bpol i ni t (10 12 G) btor i ni t (10 12 G) φlm ψ lm 

Sly4-M1.4-B14-L1 100 0 1 for l = 1 , m = 0 0 ∀ ( l, m ) 
0 otherwise 

Sly4-M1.6-B14-L1 100 0 1 for l = 1 , m = 0 0 ∀ ( l, m ) 
0 otherwise 

SLy4-M1.4-B14-L2 10 1000 0 . 5 for l = 1 , m = −1 , 0 , 1 1 for l = 1 , m = −1 , 0 , 1 
10 for l = 2 , m = −2 , 1 , 0 , 1 , 2 1 for l = 2 , m = −2 , −1 , 0 , 1 , 2 
0 otherwise 0 otherwise 

SLy4-M1.4-B14-L5 10 1000 0 . 5 for l = 1 , m = −1 , 0 , 1 1 for l = 1 , m = 0 , 1 
10 for l = 2 , m = −1 , 0 , 1 , 2 1 for l = 2 , m = 0 , 1 , 2 
10 for l = 3 , m = −1 , 0 , 1 , 2 , 3 1 for l = 3 , m = 0 , 1 , 2 , 3 
10 for l = 5 , m = −1 , 0 , 1 , 2 , 3 1 for l = 5 , m = 0 , 1 , 2 , 3 
0 otherwise 0 otherwise 

SLy4-M1.4-B14-L10 10 1000 0 . 5 for l = 1 , m = −1 , 0 , 1 1 for l = 1 , m = −1 , 0 , 1 
10 for l = 2 , m = −2 , −1 , 0 , 1 , 2 1 for l = 2 , m = −2 , −1 , 0 , 1 , 2 
10 for l = 9 , m = −7 , −2 , 0 , 2 , 5 1 for l = 10 , m = −1 , 0 , 1 
10 for l = 10 , m = −6 , −5 , 0 , 3 , 10 0 otherwise 
0 otherwise 

SLy4-M1.4-B14-L2-alt 30 100 1 for l = 1 , m = −1 , 0 , 1 1 for l = 1 , m = −1 , 0 , 1 
10 for l = 2 , m = −2 , 1 , 0 , 1 , 2 10 for l = 2 , m = −2 , −1 , 0 , 1 , 2 
0 otherwise 0 otherwise 
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he initial magnetic field configuration it is convenient, following 
eppert & Wiebicke ( 1991 ), to expand the poloidal � and toroidal
 scalar functions in series of spherical harmonics Y lm 

( θ, φ): 

� ( t, r, θ, φ) = 

1 

r 

∑ 

l,m 

� lm 

( r, t) Y lm 

( θ, φ) 

( t, r, θ, φ) = 

1 

r 

∑ 

l,m 

� lm 

( r, t) Y lm 

( θ, φ) , (F2) 

here l = 1 , ..l max is the degree and m = −l, ..., l is the order of the
ultipole. 
The initial configuration of the magnetic field is fixed by choosing a 

et of spherical harmonics. In this way, for example, we can construct
 general dipolar field by choosing � lm 

, � lm 

�= 0 for l = 1 and � lm 

=
 lm 

= 0 for l �= 1. 
Regarding the radial dependence of the coefficients � lm 

and 
 lm 

, we impose the radial profile of the dipolar poiloidal scalar
unction � l= 1 ,m 

( r) as in equation (8) of Aguilera et al. ( 2008 ) and in
quation (B9) of Dehman et al. ( 2023a ): 

 l= 1 ,m 

( r) = � 0 μr[ a + tan ( μR) b] , (F3) 

here � 0 is a normalization and the coefficients a and b are 

 = 

sin ( μr) 

( μr 2 ) 
− cos μr 

μr 
, 

 = − cos ( μr) 

( μr) 2 
− sin ( μr) 

μr 
, (F4) 

nd μ is a parameter related to the curvature of the field, calculated
or a given stellar radius R. This choice of radial dependence allows
or a smooth match with the external potential boundary condition. 
n the other hand, the toroidal field and the l > 1 poloidal field
ultiples are confined inside the crust of the star, with the following

adial dependence: 

� l> 1 ,m 

( r) = −φlm 

( R − r) 2 ( r − R core ) 2 , 

� lm 

( r) = −ψ lm 

( R − r) 2 ( r − R core ) 2 , (F5) 

here φlm 

and ψ lm 

are normalization input parameters that are set at 
he beginning of the simulation. 
Finally, the poloidal component of the field is normalized to the
aximum (absolute) value of the radial field at the surface and

escaled by the input parameter B pol , init , while the toroidal component
s normalized to the average root mean square within the volume
nd rescaled by the input parameter B tor, init . In this way the input
arameters B pol , init , B tor, init , φlm 

and ψ lm 

determine the configuration 
nd the magnitude of the magnetic field in MATINS . In Table F1 ,
e report the input parameters defining the configuration of our 

imulations. The names of the simulations are the same as the ones
eported in Table 1 . 

PPENDI X  G :  SI MULATI ON  WI TH  A  

I FFERENT  EQUATI ON  O F  STATE  

n this Appendix, we present two simulations of a non-magnetized 
tar using the BSk24 EOS (Goriely, Chamel & Pearson 2013 ): BSk24-
1.4-B0 and BSk24-M1.8-B0 , characterized by M = 1 . 47 M 
 and
 = 1 . 87 M 
, respectively. Since these simulations do not present

ny magnetic field, we adopted for these runs a reduced angular
esolution N a = 7, while N r = 30. The aim of this run is to show
ow with an appropriate EOS increasing the mass abo v e a threshold
 alue allo ws for the acti v ation of Direct URCA processes, which
eads to more efficient cooling. This result is shown in Fig. G1 .
n the top panel, the secular evolution of photon luminosity is
eported. The blue line represents the case BSk24-M1.4-B0 , while 
he orange line represents the case BSk24-M1.8-B0 . The bottom left
anel represents the neutrino luminosity for the case BSk24-M1.4- 
0 , while the bottom right panel is for the case BSk24-M1.8-B0.
olid curves represent processes located in the core, while dashed 

ines represent those ones occurring in the crust of the star (note
hat the same process can occur both in the core and in the crust,
uch as n –n Bremsstrahlung). From Fig. G1 , we can appreciate how
he direct URCA processes are the main contributor to the neutrino
uminosity in the BSk24-M1.8-B0 run, while it is completely absent 
oth in the BSk24-M1.4-B0 and in the Sly4-M1.6-B14-L1 case in 
ig. 7 that will be discussed next. It is worth noting that in this case
ost of the energy is radiated by the process within the first years
MNRAS 533, 201–224 (2024) 
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M

Figure G1. Comparison between two set-ups characterized by the same EOS BSk24 (Goriely et al. 2013 ) but different NS mass. Top: Cooling curves. The blue 
curve represents the M = 1 . 47 M 
 set-up, the orange one the M = 1 . 87 M 
 set-up. Bottom left: Luminosities of the different neutrino emission processes for 
the M = 1 . 47 M 
 case. Continuous lines represent processes occurring in the core, and dashed lines represent processes occurring in the crust. Bottom right: 
Same as the bottom left panel, for the M = 1 . 87 M 
 case. 
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f the life of the NS. In contrast, in BSk24-M1.4-B0 , the dominant
echanism is the modified URCA, which radiates a much smaller

mount of energy. The enhanced efficiency of the direct URCA with
espect to the modified URCA reflects in the photon luminosity,
hich drops by more than 2 orders of magnitude with respect to the

ower mass case before the first 100 yr of evolution, in agreement
NRAS 533, 201–224 (2024) 
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