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ABSTRACT

We conducted a study on the thermal properties of stellar matter with the nuclear energy density functional BCPM. This functional
is based on microscopic Brueckner–Hartree–Fock calculations and has demonstrated success in describing cold neutron stars. To
enhance its applicability in astrophysics, we extended the BCPM equation of state to finite temperature for β-stable neutrino-free
matter, taking into consideration the hot inner crust. Such an equation of state holds significant importance for hot compact objects,
particularly those resulting from a binary neutron star merger event. Our exploration has shown that with increasing temperature,
there is a fast decrease in the crust-core transition density, suggesting that for hot stars it is not realistic to assume a fixed value of
this density. The microscopic calculations also reveal that the presence of nuclear clusters persists up to T = 7.21 MeV, identified as
the limiting temperature of the crust. Above this threshold, the manifestation of clusters is not anticipated. Below this temperature,
clusters within the inner crust are surrounded by uniform matter with varying densities, allowing for the distinction between the upper
and lower transition density branches. Moreover, we computed mass–radius relations of neutron stars, assuming an isothermal profile
for β-stable neutron star matter at various temperature values. Our findings highlight the significant influence of the hot inner crust on
the mass–radius relationship, leading to the formation of larger and more inflated neutron stars. Consequently, under our prescription,
the final outcome is a unified equation of state at finite temperature.
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1. Introduction

Extensive efforts have been directed toward the dynamical simu-
lations of core-collapse supernovae explosions (Pons et al. 1999;
Liebendörfer et al. 2005; Oertel et al. 2017; Burgio & Fantina
2018) and the subsequent formation and evolution of a proto-
neutron star (PNS). A realistic equation of state (EOS) of
asymmetric nuclear matter over a wide range of densities and
temperatures is one of the most vital inputs to these calculations
(Bethe 1990). Current insights suggest three distinct phases in
this process (Pons et al. 1999; Barrère et al. 2022): (i) Roughly
one second after the supernova core bounce, a comparatively
cool central region, bordered by a hotter mantle, rapidly col-
lapses, emitting neutrinos while accreting material. (ii) Over
the next 20 s or so, a slowly developing state of the PNS can
be identified. The system first deleptonizes and heats up the
interior parts of the star, and then begins to cool down further
through neutrino diffusion. (iii) After several minutes, the final
state of the neutron star (NS) emerges, initially cooling by neu-
trino emission and later by photon emission from its surface
(Pons & Viganò 2019).

A cold NS becomes stratified in three primary regions: the
outer crust, the inner crust, and a uniform core. Each region is
distinguished by its unique set of physical properties. In the NS
core, matter forms a homogeneous liquid comprising primar-
ily neutrons, together with some specific fractions of protons,

electrons, and muons, ensuring the system remains in charge
and β equilibrium. At even greater densities deeper inside the
core, hyperons, other strange particles, and deconfined quarks
can emerge (Shapiro & Teukolsky 1983; Haensel et al. 2007).
Transitioning from the core toward the outer layers, the den-
sity decreases, causing positive charges to cluster individually,
identified by charge Z, and arrange into a solid lattice. This
organization minimizes Coulomb repulsion between them. The
lattice is embedded in a gas of neutrons and a background
of electrons, ensuring overall charge neutrality for the system.
This region is known as the inner crust. In the deepest layers
of the inner crust, nuclear structures may take on nonspheri-
cal forms, commonly referred to as “nuclear pasta,” driven by
energy minimization (Baym et al. 1971a; Lorenz et al. 1993).
Above the inner crust, in regions of lower densities, all neu-
trons become confined within nuclear clusters, giving rise to a
lattice structure enriched with nuclei interspersed with a degen-
erate electron gas. This layer is defined as the outer crust
(Baym et al. 1971b) and it extends from the interior, character-
ized by the neutron drip density, to the exterior, encompassing
the envelope layer, which plays an important role in NS cool-
ing (Potekhin et al. 2015; Dehman et al. 2023). The crust of the
NS, although it comprises a small fraction of its total mass and
radius, is decisive in various observable signals from NSs, such
as, glitches in pulsar NSs (Piekarewicz et al. 2014), bursts and
outbursts in intensely magnetized NSs (Beloborodov & Li 2016;
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Coti Zelati et al. 2018; Dehman et al. 2020), and NS asteroseis-
mology phenomena (Steiner & Watts 2009; Sotani et al. 2012;
Neill et al. 2023).

The first observation of a NS merger event, GW170817, by
Abbott et al. (2017) has opened new avenues for studying the
properties of matter under extreme conditions of densities and
temperatures (Baiotti 2019). This event, resulting from the col-
lision of two NSs, creates conditions that can lead to either
the formation of a black hole or a notably massive NS. How-
ever, the final outcome of the GW170817 merger is still a
subject of ongoing debate (Pooley et al. 2018). The pre-merger
phase, known as the inspiral phase, leaves a unique imprint
on the gravitational wave (GW) signal due to the tidal defor-
mation of the stars involved, which is influenced by the EOS
at zero or near zero temperature. This effect becomes notice-
able early in the binary dynamics (Flanagan & Hinderer 2008;
Hinderer et al. 2010; Shibata 2015; Krastev & Li 2019). The
post-merger phase is expected to significantly heat the rem-
nant, raising its temperature to tens of mega-electronvolt. This
heating affects post-merger characteristics, such as the rem-
nant’s lifespan, the GW spectrum, and the ejected mass, all of
which are crucially dependent on the finite temperature EOS
(Oechslin et al. 2007; Sekiguchi et al. 2011; Bauswein et al.
2013; Soma & Bandyopadhyay 2020).

A unified EOS for the crust and the core of NSs at zero
temperature was introduced in Sharma et al. (2015), based on
the BCPM nuclear energy density functional (Baldo et al. 2008,
2010, 2013, 2017). In the BCPM functional, the bulk part of the
energy density is entirely given by ab initio Brueckner–Hartree–
Fock (BHF) calculations of nuclear matter. The bulk term is
supplemented with surface and Coulomb terms, allowing one to
describe the inhomogeneous nuclear structures of the NS crust
and the homogeneous matter of the NS core simultaneously in a
microscopic-based and consistent approach. Despite significant
progress in developing the EOS for cold dense matter, the EOS at
finite temperature has not been as thoroughly investigated. Our
study aims to introduce a suitable method for examining thermal
effects on the BCPM EOS. We particularly focus on the critical
role of the hot inner crust.

Together with the growing interest in the high-energy astro-
physical phenomena associated with compact stars, in recent
years there has been much progress in the formulation of hot
microscopic EOSs for the core of these systems (see, e.g.,
Lu et al. 2019; Logoteta et al. 2021; Figura et al. 2021, and
references quoted therein). Few calculations of hot EOSs are
available, however, that include the crust at finite temperature
computed with the same model as the core, and these mod-
els generally are phenomenological ones (see Oertel et al. 2017;
Raithel et al. 2021 for recent reviews of hot EOSs). Hence, in
the present work we address a first exploration of a thermal EOS
including the hot inner crust calculated on a microscopic basis
by using the BCPM functional. We develop the study within a
neutrino-free β-stable framework, assuming an isothermal pro-
file of hot nuclear systems consisting of neutrons (n), protons
(p), electrons (e), and muons (µ). In this context, the hot inner
crust is present at relatively low densities and moderate tem-
peratures. The mean free path of neutrinos in this regime is
expected to be large enough for neutrinos not to be trapped
(Reddy et al. 1999). For a broader scope, though, calculations
with trapped neutrinos as well as configurations at constant
entropy per baryon should also be addressed. The present ther-
mal EOS is particularly relevant for compact objects in warm
environments where neutrinos are not trapped and matter is β
equilibrated. This includes scenarios such as the post-merger

phase of binary NS events or the last stages of the evolution of
PNSs (Oertel et al. 2017; Kumar & Bošnjak 2020; Bethe 1990),
assuming that the temporal evolution is slow enough to justify
that matter approaches the indicated conditions (Lu et al. 2019).

This paper is organized as follows. Section 2 describes the
BCPM EOS. Sections 2.1 and 2.2 detail the EOS at zero and
finite temperatures, respectively. The results obtained in this
study are illustrated in Sect. 3, where we highlight the signifi-
cant influence of the hot inner crust. The conclusions are drawn
in Sect. 4.

2. BCPM and equation of state of β-stable matter

2.1. Zero-temperature equation of state

The microscopic BHF calculations can be directly employed to
obtain the EOS of the liquid core of NSs, where the nuclei have
dissolved into their constituent protons and neutrons. However,
a BHF calculation of finite nuclei and nuclear structures in a NS
crust is not yet feasible. To describe finite nuclei, retaining as
much information from the ab initio BHF calculations as pos-
sible, the BCPM nuclear energy density functional was devel-
oped (Baldo et al. 2008, 2010, 2013, 2017). Initially designed for
characterizing the ground state of finite nuclei, the BCPM func-
tional comprises a bulk component given by the BHF results in
symmetric nuclear matter and neutron matter through the local
density approximation, supplemented with a finite-range term
to account for the surface properties. The Coulomb, spin-orbit,
and pairing contributions are also included (Baldo et al. 2008,
2013). Having in total four adjustable parameters (for the sur-
face and spin-orbit terms only), BCPM describes the properties
of finite nuclei with the same success as usual nuclear function-
als that contain many more free parameters. The bulk component
of the model was obtained using the BHF approach, where the
calculations employed the Argonne v18 nucleon-nucleon (NN)
interaction, with the inclusion of three-body forces reduced to a
two-body density-dependent term (Wiringa et al. 1995, chapter 1
of Baldo 1999, and references therein, Taranto et al. 2013). The
resulting EOS for both symmetric and asymmetric nuclear mat-
ter satisfies several criteria set by heavy ion collisions and recent
astrophysical observations.

In the BCPM functional, the bulk contribution to the energy
per particle is the sum of the kinetic energy per particle (ekin) and
the potential energy per particle (vint):

e(n, β) = ekin(n, β) + vint(n, β). (1)

The kinetic energy per particle at zero temperature is that of a
noninteracting cold Fermi gas with degeneracy factor of 2 and
isospin asymmetry β:

ekin(n, β) =
1
2

3
5
~2

2m

(3π2n
2

)2/3[(
1 + β

)5/3
+

(
1 − β

)5/3
]
, (2)

where n = nn + np (nn and np are, respectively, the neutron and
proton number densities) and β = (nn−np)/n is the isospin asym-
metry parameter. The potential energy per particle in the bulk,
vint(n, β), is represented as a quadratic interpolation between
the interaction energy per particle in symmetric nuclear matter
(SNM), vint(n, 0), and pure neutron matter (PNM), vint(n, 1):

vint(n, β) = vint(n, 0) +

(
vint(n, 1) − vint(n, 0)

)
β2. (3)

Here, vint(n, 0) and vint(n, 1) are given by the microscopic BHF
calculations at various densities. For computational efficiency,
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in BCPM an accurate polynomial fit of the discrete BHF points
is performed as a function of the density n (Baldo et al. 2010;
Sharma et al. 2015). This fit remains valid up to a density n ≈
0.4 fm−3. For bulk matter at higher density values, as the ones
that can be found in NS cores, we utilize functional forms that
provide excellent parametrizations of the BHF results for SNM
and PNM at T = 0 (Burgio & Schulze 2010; Sharma et al.
2015).

The BCPM functional was employed in Sharma et al. (2015)
to establish a unified EOS for the outer crust, inner crust and
core of NSs at zero temperature. Many-body calculations of the
inhomogeneous structures in the NS crust currently fall beyond
the scope of the BHF approach, which is used for modeling the
homogeneous core. The calculation of the NS crust with the
BCPM functional maintains a consistent microscopic approach
in describing the entire stellar structure. The NS crust is mod-
eled within the Wigner–Seitz (WS) cell approximation, dividing
space into noninteracting cells, each containing a single nuclear
cluster in charge and β equilibrium. In the outer crust, matter
is composed of fully ionized atomic nuclei, forming a solid lat-
tice to minimize Coulomb repulsion, permeated by a degener-
ate electron gas. The critical data for constructing the outer crust
EOS are the nuclear masses, sourced from the AME2012 evalua-
tion (Audi et al. 2012), or, if they are unknown, calculated using
the Hartree–Fock–Bogoliubov (HFB) method with the BCPM
functional (Sharma et al. 2015). As the star’s average density
increases, nuclei become increasingly neutron-rich, eventually
leading to the inner crust, where neutrons begin to drip. The
inner crust thus consists of nuclear clusters immersed in a gas
of dripped neutrons and a background of electrons. In the bot-
tom of the inner crust, surrounding the uniform core, a thin layer
of pasta phases (nuclear clusters that adopt nonspherical shapes)
is predicted by the BCPM calculations (Sharma et al. 2015).

A fully quantum calculation of the inner crust is a challeng-
ing task due to the presence of the neutron gas. To describe the
cold inner crust in Sharma et al. (2015), self-consistent Thomas-
Fermi (TF) calculations with BCPM were performed. This
approach offers a significant advantage, because the EOS in the
inner crust is primarily influenced by the neutron gas, which
means that shell and pairing effects have a marginal impact
on the EOS and the proton fraction (Pearson & Chamel 2022).
Using this formalism, the EOS of the crust and the core are both
determined through the BCPM energy density functional. The
generalization of this formalism to finite temperature for the core
and the inner crust is presented in Sect. 2.2.

2.2. Equation of state at finite temperature

In this work we extend the BCPM EOS to finite temperature. We
introduce the thermal effects through the Fermi occupation num-
bers in the energy density functional, while keeping the interac-
tions the same as at T = 0, as usually done in nuclear func-
tionals. This approach is often known as the frozen-correlations
approximation (Baldo & Ferreira 1999; Burgio et al. 2007), as it
assumes the nucleon single-particle potential at finite T to be
the same as at T = 0. It has been checked in hot BHF calcula-
tions that this assumption is verified with good accuracy, at least
for temperatures up to about 30 MeV (Baldo & Ferreira 1999;
Burgio et al. 2007; Burgio & Schulze 2010; Lu et al. 2019).

2.2.1. The liquid core

To determine the self-consistent occupation numbers in asym-
metric nuclear matter at a given temperature, we minimize the

thermodynamic potential, given by:

Ω =
∑

q=n,p

∑
k

Eq(nn(k), np(k)) − TS −
∑

q=n,p

∑
k

µqnq(k),

=
∑

q=n,p

∑
k

Fq(nn(k), np(k)) −
∑

q=n,p

∑
k

µqnq(k). (4)

Here, E represents the internal energy, T is the temperature, F
is the free energy, S is the entropy, and µq and nq(k) are, respec-
tively, the chemical potential and the occupation number of each
type of nucleon, with q = n, p. The entropy per particle for asym-
metric nuclear matter with proton and neutron fraction yq = nq/n
at finite temperature is expressed as:

s(n, β,T ) =
∑

q=n,p

yqsq(n, β,T ), (5)

with sq being the entropy per particle of each component:

sq(n, β,T ) = −
∑

k

(
nq(k) ln nq(k) +

[
1−nq(k)

]
ln

[
1−nq(k)

])
. (6)

In Eqs. (4) and (6), nq(k) represent the Fermi occupation
numbers, which are the solutions of the variational equations
obtained by applying the variational principle to the grand poten-
tial (Eq. (4)). These occupation numbers read as:

nq(k) =
1

1 + e(εq(k)−µq) / T , (7)

where εq(k) denotes the single-particle spectrum given by:

εq(k) =
~2k2

2m
+ Vq(n, β). (8)

In the frozen-correlations approximation, the single-particle
potential Vq depends on the baryon number density n and the
isospin asymmetry β and is independent of temperature. It is
given by:

Vq(n, β) =
∂
(
n vint(n, β)

)
∂nq

= vint(n, β) + n
∂vint(n, β)
∂nq

, (9)

with vint(n, β) of the cold calculation, Eq. (3). The number den-
sity nq of neutrons and protons reads as:

nq =
2

(2π)3

∫ ∞

0
nq(k) d3k =

1
2π2

(
2mT
~2

)3/2

J1/2(ηq), (10)

where J1/2(ηq) is the Fermi integral of index ν = 1/2:

J1/2(ηq) =

∫ ∞

0

z1/2dz
1 + e(z−ηq) · (11)

Here, we have z = [εq(k) − Vq]/T and the fugacity reads ηq =
[µq − Vq]/T .

At finite temperature, the total energy per particle of asym-
metric nuclear matter becomes

e(n, β,T ) = ekin(n, β,T ) + vint(n, β), (12)

where the interaction term, vint(n, β), is defined in Eq. (3), and
the nucleonic kinetic energy per particle reads as:

1
n

∑
q=n,p

~2 τq

2m
, (13)
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where

τq =
2

(2π)3

∫ ∞

0
k2 nq(k) d3k =

1
2π2

(
2mT
~2

)5/2

J3/2(ηq), (14)

and J3/2(ηq) is the Fermi integral of index ν = 3/2:

J3/2(ηq) =

∫ ∞

0

z3/2dz
1 + e(z−ηq) · (15)

The proton and neutron chemical potentials are expressed in
terms of the temperature T , fugacity ηq (obtained by inverting
Eq. (10) for a given nucleon density nq), and the single-particle
potential Vq:

µq(n, β,T ) = ηqT + Vq(n, β). (16)

The pressure is given by:

P (n, β,T ) = n
[ ∑

q=n,p

yq µq(n, β,T ) − f (n, β,T )
]
, (17)

where f (n, β,T ) is the nucleonic free energy per particle.
In homogeneous neutrino-free stellar matter containing

nucleons and leptons (electrons and muons), under the constraint
of charge neutrality (np = ne + nµ), the conditions for β equilib-
rium are:

µn − µp = µe , µµ = µe. (18)

In our approach, nucleons are treated as nonrelativistic parti-
cles, while the leptons are considered as relativistic free parti-
cles. With the inclusion of leptons, the energy in Eq. (12) also
contains the leptonic contribution:

1
n

2
(2π)3

∫ ∞

0
εl(k) nl(k) d3k, l = e, µ, (19)

where εl(k) =

√
~2k2c2 + m2

l c4 and nl(k) is the occupation num-
ber of leptons:

nl(k) =
1

1 + e(εl(k)−µl) / T · (20)

Likewise, the total entropy and the total pressure of the system
are obtained by adding the contribution of free leptons to that of
nucleons.

2.2.2. The hot inner crust

We have employed the TF method at finite temperature to calcu-
late the EOS of the inhomogeneous matter of the crust using the
BCPM functional. The nuclear clusters in the hot crust are com-
puted inside spherical WS cells of radius Rc. Each cell is elec-
trically neutral, and interactions between cells are neglected. At
nuclear densities, the electrons exhibit highly relativistic behav-
ior, as their Fermi momenta far exceed their rest mass. There-
fore, they can be assumed to be uniformly distributed within the
WS cell. Inside the cell, we impose β equilibrium, leading to the
condition µn = µp + µe when neutrinos have left the star. Simi-
larly to the core, the properties of the hot system within the WS
cell are determined by minimizing the thermodynamic potential
(Eq. (4)), which, in the crust, also includes nonuniform contri-
butions (see below). It is important to note that at finite T , nuclei
become unstable against nucleon evaporation, giving rise to a
surrounding gas of evaporated nucleons. Thus, within the WS

cell, a coexistence between the nuclear cluster plus gas and the
gas alone occurs. Consequently, in the hot TF calculations in a
WS cell there exist two solutions of the TF equations in equilib-
rium: one corresponding to the liquid-plus-gas (LG) phase and
the other one corresponding to the gas (G) phase alone (Suraud
1987; Sil et al. 2002, and references therein).

In the context of the crust, the internal energy contributing to
the thermodynamic potential is expressed as follows within the
WS cell of volume Vc:

E =

∫
Vc

[
H(nn, np) + Eel + Ecoul + Eex + mpnp + mnnn

]
dr. (21)

Here, H(nn, np) represents the nuclear energy density, where
nn = nnr) and np = np(r) are the neutron and proton num-
ber densities, respectively, which are position dependent within
the cell. In the hot TF approach, H incorporates the kinetic
energy density of protons and neutrons at finite temperature (see
Eq. (13)). Additionally, it incorporates the cold interacting part
V(nn, np), as determined by the BCPM functional, covering both
bulk (Eq. (3)) and surface contributions (Sharma et al. 2015).
The surface term is taken as at zero temperature:

Esurf(nn, np) =
1
2

∑
q,q′

nq(r)
∫

vqq′ (r − r′)nq′ (r′)dr′

−
1
2

∑
q,q′

nq(r)nq′ (r)
∫

vqq′ (r′)dr′. (22)

The second term in Eq. (22) is subtracted to avoid contamina-
tion of the bulk part derived from the microscopic nuclear matter
calculations. For the finite-range form factors, we use the same
Gaussian shape vqq′ (r) as in Baldo et al. (2010), Sharma et al.
(2015). The term Eel in Eq. (21) represents the energy density
arising from the motion of electrons at finite temperature, with
their energy per particle given in Eq. (19). For the densities
and temperatures of our calculations of the crust, muons did not
occur in this region of the star.

At finite temperature, the direct Coulomb contribution in a
WS cell corresponding to the LG and G phases, as discussed in
Sil et al. (2002), is expressed as:

Ecoul
LG (np

LG, ne) =
1
2
(
np

LG(r) − ne
)(

Vcoul,p
LG (r) − Ve(r)

)
, (23)

and

Ecoul
G (np

G, ne) =
1
2
(
np

G(r) − ne
)(

Vcoul,p
G (r) − Ve(r)

)
+ np

L(r)
(
Vcoul,p

G (r) − Ve(r)
)
, (24)

where np
L = np

LG − np
G is the proton density of the nuclear cluster.

The potentials Vcoul,p
LG(G)(r) and Ve(r) are given by:

Vcoul,p
LG(G)(r) =

∫ e2np
LG(G)(r′)
|r − r′|

dr′, Ve(r) =

∫
e2ne

|r − r′|
dr′. (25)

The direct part of the single-particle Coulomb potential, obtained
by performing the functional derivatives of the LG and G direct
Coulomb energies with respect to nLG and nG, respectively, is the
same for both phases and reads:

Vd
coul(r) =

∫ e2(np
LG(r′) − ne

)
|r − r′|

dr′. (26)
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The total Coulomb energy in the LG and G phases is comprised
of the direct contributions, as described in Eqs. (23) and (24),
respectively, along with the exchange contribution from protons
and electrons, which is calculated at the Slater level:

Eex
LG(G)(n

p
LG(G), ne) = −

3
4

(
3
π

)1/3

e2
(
np

LG(G)(r)4/3 + n4/3
e

)
. (27)

Taking functional derivatives of the thermodynamical poten-
tial (Eq. (4)) with the energy given by Eq. (21), which includes
Coulomb effects in both LG and G phases, with respect to nq

LG
and nq

G for neutrons and protons, we obtain the following set of
coupled equations, as described in Sil et al. (2002):

Tηq
LG(r) + Vq

LG(r) + Vcoul
LG (r) = µq, (28)

Tηq
G(r) + Vq

G(r) + Vcoul
G (r) = µq. (29)

Here, Vq
LG(G) represents the nuclear part of the single-particle

potential in the LG(G) phases, and Vcoul
LG(G) is the total Coulomb

potential, which is the sum of the direct term from Eq. (26) and
the exchange part obtained from derivatives with respect to np

LG
(np

G) of the exchange energy as given in Eq. (27).
For a certain temperature T and average baryon density n

in the WS cell, assuming a radius Rc (equivalently, a baryon
number A) for the cell, the set of variational equations is solved
self-consistently using the method described in Sil et al. (2002).
This method allows for the determination of the composition
(A,Z) of minimal free energy per baryon in β equilibrium. Next,
we search for the optimal cell size (i.e., optimal baryon num-
ber) for the given baryon density n by repeating the calcula-
tion for various values of Rc. In the present study at finite T ,
we restrict ourselves to spherical WS cells. This choice is moti-
vated by the fact that in the BCPM calculations at T = 0,
nuclear pasta shapes appear just in a small density region near
the transition to the core, cf. Fig. 4 of Sharma et al. (2015). Fur-
thermore, as the relevant energy surfaces are very flat near the
optimal configurations and they present tiny energy differences
between spherical and nonspherical cells, the different geomet-
rical shapes have a negligible impact on the EOS (pressure vs
density) (Sharma et al. 2015; Pearson et al. 2020). Therefore, for
simplicity, here we consider spherical cells only. However, the
consideration of pasta phases would be important in applications
where the detailed structure of the crust is required, as pasta may
strongly influence elasticity, transport and other properties of the
NS crust (Haensel et al. 2007).

We note that at finite T , the distinctive nuclear shell effect
is eroded, as thermal excitation disrupts the well-defined energy
levels within the nucleus present at T = 0. It is a well-known
consequence of the smearing of the Fermi surface caused by the
Fermi occupation numbers. In hot nuclear systems with temper-
atures higher than T ≈ 2−3 MeV the shell effects have vanished
(Barranco & Buchler 1981; Brack et al. 1985; Pi et al. 1986),
meaning that these systems are optimal objects for TF calcu-
lations like ours.

We are focused on calculating the EOS in various regions of
the NS, with a specific emphasis on determining the structure
and EOS in the crust using the BCPM model at a finite T . To
obtain the EOS in the inner crust, it is necessary to compute the
pressure, which is determined by taking appropriate derivatives
of the energy with respect to the size of the WS cell. As shown
in Appendix A of Sharma et al. (2015) (also see Pearson et al.
2018), at T = 0 the pressure in the inner crust is a result of the
neutron and electron gases within which the nuclear structures

are embedded. At finite T , it consists of the contributions of the
nucleons (neutrons and protons) and the free electrons in the gas
phase, plus the Coulomb exchange pressure of the charged par-
ticles in the gas.

The exploration of the presence of hyperons and other exotic
degrees of freedom in hot supranuclear matter is extremely inter-
esting and a major topic of ongoing research (Oertel et al. 2017;
Marques et al. 2017). We recall, however, that since we are
largely focused on the regime of densities of the crust, where
hyperons are not expected to occur in any significant amount
(Menezes & Providência 2017), we consider the picture where
the baryonic composition of the star corresponds to purely nucle-
onic matter. Recent Bayesian analyses of the possible behaviors
of the EOS of dense matter indicate that the existing astrophysi-
cal measurements of NSs are compatible with the fully nucleonic
hypothesis for the composition of dense matter (Thi et al. 2021).

3. Impact of hot crust

To study the EOS in the NS crust at finite temperature, we
start by examining the transition between crust matter and uni-
form matter across different temperature ranges. Although it
is possible to estimate the crust-core transition density from
the core side by looking at the threshold for the instability of
uniform matter against clustering (Kubis 2004; Xu et al. 2009;
Moustakidis 2012; Gonzalez-Boquera et al. 2019), in this study,
we seek the transition density from the perspective of the crust
to emphasize the behavior of the crust at finite temperature. In
the inner crust, we search for the nuclear composition that pro-
vides the minimal free energy per baryon in β equilibrium using
the hot TF method discussed in the previous section. This cal-
culation of the crust includes self-consistently the Coulomb and
surface effects, which are absent in uniform matter. As in the
T = 0 case (Sharma et al. 2015), the transition from the crust
to the uniform matter is determined by an energy criterion. This
transition occurs when the free energy per baryon of the homo-
geneous phase is lower than that obtained for the clustered phase
within the WS cell. At T = 0 the BCPM spherical-cell calcu-
lations predict that the crust-core interface is located at baryon
density n = 0.08 fm−3.

In Fig. 1, we show the regions where the clustered and the
uniform matter are the most stable phases as a function of the
temperature and the average baryon density, derived from hot TF
calculations with BCPM. This figure features a thick blue line in
the density-temperature plane that separates these two regions.
The figure also illustrates that the crust-uniform matter transition
boundary, as a function of temperature, is a bivalued function
that decreases with increasing temperature until it converges to a
single endpoint. This endpoint occurs at a specific limiting tem-
perature (Tlim), predicted to be of 7.21 MeV, beyond which crust-
uniform matter transitions are not feasible. The upper and lower
transition densities illustrated in Fig. 1 are collected in Table 1
for specific temperature values. The concept of the upper tran-
sition density is analogous to the transition density between the
inner crust and the core of NSs at zero temperature, whereas the
lower transition density does not have a T = 0 counterpart.

Figure 2 displays the difference in free energy per baryon
between crust matter and uniform matter for T = 0, 2, 5, and
7.5 MeV. At each temperature, the crust phase is favored while
the result is negative. Starting from T = 0, the gap between the
free energy of the crust phase and the uniform phase is seen to
shrink rapidly as T increases. We note that in this figure we have
divided the T = 0 result by 10 and the T = 2 result by 4 to dis-
play the four temperatures with the same vertical scale. It can
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Fig. 1. Upper and lower branches of the transition density between the
uniform matter and the clustered matter computed at different tempera-
ture values. The blue shaded area corresponds to the presence of nuclear
clusters, determined using TF calculations within a WS cell.

Table 1. Upper (nu
t ) and lower (nl

t) transition densities, as illustrated in
Fig. 1, for specific temperature values.

T nu
t nl

t
[MeV] [fm−3] [fm−3]

2.00 0.068 3 × 10−5

3.00 0.061 0.0004
4.00 0.055 0.0015
5.00 0.049 0.0037
6.00 0.041 0.009
6.50 0.036 0.011
7.00 0.030 0.016
7.15 0.027 0.019
7.20 0.025 0.021
7.21 0.023 0.023

also be observed that the T = 0 curve crosses the zero axis
of Fig. 2 only once, at n = 0.08 fm−3, which is the crust-core
transition density of the cold case. However, with raising T , the
free energy gap between crust and uniform matter presents an
inverted-bell shape, such that for T < Tlim, as illustrated by the
T = 2 and 5 MeV cases, the gap vanishes at two different density
points, corresponding to the lower (nl

t) and the upper (nu
t ) tran-

sition density for the given temperature. The separation between
nl

t and nu
t closes with higher T , until nl

t = nu
t for the limiting

temperature Tlim = 7.21 MeV. Above Tlim, the free energy of the
clustered matter remains higher than for the uniform matter, as
shown in the plot by the T = 7.5 MeV case.

Some differences are noticed between the zero and the finite
temperature scenarios. At zero T , the inner crust of a NS con-
sists of nuclear clusters that encapsulate all the protons present
in the WS cell, amid a gas of dripped neutrons. As the aver-
age baryon density rises, the contribution from the neutron gas
also increases. A threshold density exists, above which uniform
matter becomes the most stable phase. With thermal excitation,
more neutrons evaporate from the clusters into the surrounding
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Fig. 2. Difference between the calculated free energy per particle of the
clustered matter and of the uniform matter for T = 0, 2, 5, and 7.5 MeV.
Notice that the T = 0 result is divided by a factor 10 and the T = 2 MeV
result by a factor 4.

gas, resulting in an increased neutron number in the gas phase.
Protons also evaporate at finite T , contributing to the forma-
tion of a charged gas. In this scenario, a lower transition density
appears, below which uniform matter becomes again the most
stable phase. Our calculations have shown that the reemergence
of the uniform matter in the lower transition density branch is
due to both the proton Coulomb contribution and the interac-
tion between protons and neutrons in the gas phase. As depicted
in Fig. 1 and seen also in Fig. 2, the density range at a given
T in which clustered matter is the most stable phase dimin-
ishes with increasing T . The upper and lower boundaries defin-
ing this region converge, ultimately merging into a single point
at the limiting temperature. This scenario is akin to the phe-
nomena observed in nuclear matter when analyzing instabili-
ties within a homogeneous medium (Barranco & Buchler 1981;
Lattimer & Swesty 1991; Hempel & Schaffner-Bielich 2010).

It is noteworthy that at the transition density between the
crust and uniform matter for both the lower and upper branches,
our findings indicate that the proton fraction at these points is
approximately 0.03. Additionally, we have computed the plasma
parameter, defined as Γ = (Zcle)2/(RcT ), at the transition density
points illustrated in Table 1 and Fig. 1. We find that Γ is con-
sistently less than 175 at all transition densities, indicating that
the clusters are in the liquid phase (Pi et al. 1986). This result
is in agreement with previous findings reported in the literature
(Aguilera et al. 2008).

Certain studies of the NS EOS at finite temperature assume
a cold crust because the EOS of the hot crust for the considered
nuclear interaction is not available. Consequently, these EOSs
are composed of a hot core starting from a specified value of
the crust-core transition density computed at zero T , supple-
mented by a cold crust contribution obtained from existing lit-
erature (see, e.g., Bombaci 1996; Lu et al. 2019, and references
therein). In the left panel of Fig. 3, we illustrate this type of NS
EOSs using the BCPM density functional at various tempera-
tures while considering a cold crust. In this case, we have main-
tained the zero-temperature density transition point between the
inner crust and the core at n (T = 0) = 0.08 fm−3, as reported
in Sharma et al. (2015). For temperatures T . 2 MeV, the
discontinuity between the cold crust and the hot core EOS is
acceptable. However, as the temperature increases, for example
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Fig. 3. EOSs of β-stable neutrino-free matter at different temperature values of T = 0, 2, 5, 10, and 20 MeV. In the left panel, we use a cold crust
assuming the transition between the cold crust and the uniform core fixed at n = 0.08 fm−3. In the right panel, we use a hot inner crust and the
crust–uniform matter transition is determined as described in Sect. 3, consistently with Fig. 1.
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Fig. 4. EOSs of β-stable neutrino-free matter at different temperature
values ranging from T = 0 to 50 MeV. For T lower than Tlim =
7.21 MeV, we display the NS EOS containing the hot inner crust using
the BCPM functional. At T > 7.21 MeV, the NS is composed of homo-
geneous dense matter, thus we illustrate the results of the bulk part of
the hot BCPM functional.

T = 5, 10, and 20 MeV, the discontinuity becomes more and
more pronounced.

When a constant T is considered (isothermal profile), the
radius of the star cannot be defined by the usual condition of
vanishing pressure at the surface of the star. This is because at
finite T , the pressure does not vanish even at very low densities
(Buchler & Coon 1977), and, consequently, the thermal effect
causes isolated NSs to expand. To address this, a temperature
drop from the hot interior to the surface of the star is neces-
sary. A proper determination of the temperature profile of the
star would require dynamical simulations of thermal transport
coupled with the T -dependent EOS. Given the difficulty and
existing uncertainties, other alternatives have been explored in
the literature, such as using a neutrino sphere to ensure the tem-
perature drops to zero at low density (Gondek et al. 1997). For
this reason, in our subsequent calculations for modeling NSs, we
coupled the finite-temperature EOS of the core and the crust at
n = 10−4 fm−3 with the cold outer crust to obtain a cold surface.
The rationale for selecting the value of 10−4 fm−3 aligns with the

outer-to-inner crust transition density of the BCPM functional at
T = 0 (Sharma et al. 2015). Moreover, this value is compatible
with the range of densities predicted in the literature where the
neutrino sphere is employed (Gondek et al. 1997; Strobel et al.
1999; Fischer et al. 2009). Therefore, our EOS at finite T for NS
calculations is built up as follows. For temperatures below the
limiting temperature of 7.21 MeV, we compute the EOS taking
into account the hot inner crust and the uniform matter according
to the different density regions shown in Figs. 1, 2 and Table 1.
When the temperature exceeds 7.21 MeV, the existence of the
hot inner crust ceases; consequently, we employ calculations for
hot uniform matter throughout. For all T values, we rely on
the cold outer crust for densities below 10−4 fm−3. It is worth
mentioning that we have compared our NS mass-radius (M–R)
relation results for T = 15 MeV (see below) with those from
Gondek et al. (1997), which were obtained by considering an
isothermal temperature profile at T = 15 MeV and a neutrino
sphere, instead of a cold outer crust. We found that our results
are consistent with theirs.

Plots of our EOSs at different temperatures with the hot inner
crust prescription are depicted in the right panel of Fig. 3. The
impact of the hot temperature EOS in the crustal region can
be appreciated at baryon densities below 0.08 fm−3 by compar-
ing the left and right panels of this figure. In Fig. 4, we plot a
wider range of the EOSs at finite temperatures, extending up to
T = 50 MeV. A consistent trend of growth is observed for all
temperatures.

The M–R relations of NSs composed of neutrino-free β-
stable matter are illustrated in Fig. 5 at different tempera-
ture values. The colorbar reflects the central density of the
star. The M–R relations have been calculated by solving the
Tolman–Oppenheimer–Volkoff equations (Shapiro & Teukolsky
1983). The observational masses used to depict the constraint
of M ∼ 2 Msun in the M–R graph are 1.97 ± 0.04 Msun from
the PSR J1614-2230 pulsar (Demorest et al. 2010) and 2.01 ±
0.04 Msun from the PSR J0348+0432 pulsar (Antoniadis et al.
2013). The T = 0 EOS satisfies this limit for the maximum mass,
as well as the 1.4 Msun radius constraint of R1.4 = 11.9 ± 1.4 km
extracted by the LIGO-Virgo collaboration from the analysis of
GW170817 (Abbott et al. 2018), and is also compatible with
the mass and radius constraints of 2.08 ± 0.07 Msun measured
in the PSR J0740+6620 pulsar (Fonseca et al. 2021) and R1.4 =
12.45±0.65 km deduced from NICER data on PSR J0740+6620
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Fig. 5. Computed mass–radius relations of NSs with an isothermal pro-
file at temperatures of T = 0, 2, 5, 15, and 20 MeV. The observational
mass constraints are 1.97 ± 0.04 Msun (gray band) from the PSR J1614-
2230 pulsar (Demorest et al. 2010) and 2.01 ± 0.04 Msun (cyan band)
from the PSR J0348+0432 pulsar (Antoniadis et al. 2013).

(Miller et al. 2021). We see in Fig. 5 that the maximum mass of
a NS slightly increases as T grows, compared to the cold T = 0
case, but remains almost constant with temperature, in conso-
nance with previous findings (Bombaci 1996; Burgio & Schulze
2010; Lu et al. 2019). As T increases, there is, however, a strong
effect on the stellar radius, which for the same mass shifts toward
a larger value when the star is hot. As a consequence the com-
pactness of the NS, C = GM/(Rc2), decreases with higher tem-
peratures. For instance, if we consider the maximum mass con-
figurations, we have C = 0.30 for T = 0, whereas C = 0.23
for T = 20 MeV. This temperature dependence of the compact-
ness may have observable consequences in the simulations of
core-collapse supernovae, PNSs, and hot remnants of binary NS
mergers (Oechslin et al. 2007). On the other hand, as evident
from the colorbar, for a given T the central density takes the
highest value for the maximum mass and decreases as the NS
mass decreases and the NS radius increases. Furthermore, for
a given value of the mass, specially for not too small masses,
the central density of the star is rather independent of tempera-
ture, showing a mild reduction with higher T . For example, for
M = 1.5 Msun (2 Msun) the central density experiences a slight
decrease of 5% (2.5%) from T = 0 to 20 MeV.

To emphasize the impact of the hot inner crust, we present
a comparison of the M–R relations in Fig. 6. On the one hand,
we consider a full cold crust below a density of 0.08 fm−3 (dot-
ted lines), and on the other hand, a hot inner crust (solid lines,
the same of Fig. 5) at T = 5 and 15 MeV. We include the M–R
relation at T = 0 as a reference. The two arrows indicate the
shift in the M–R relation for T = 5 and T = 15 MeV when con-
sidering the hot inner crust. The EOSs with a cold crust predict
M–R relations that are similar to those at T = 0, particularly for
low temperature values, for instance T = 5 MeV, and around the
maximum mass, that is, M ∼ 2 Msun. However, with the hot inner
crust, the influence of temperature on the M–R relation becomes
much more pronounced. Clearly, when one attaches a cold crust
below the cold crust-core transition density (0.08 fm−3) to the hot
core, the effect of temperature on the radius of the star is largely
underestimated. That is, even if a hot core EOS is implemented,
with a cold crust the NS radius increases very moderately com-
pared with the T = 0 EOS. When comparing the central densities
predicted by considering a full cold crust and a hot inner crust
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Fig. 6. Mass–radius relations of NSs with an isothermal profile at tem-
peratures of T = 0, 5, and 15 MeV. The dotted lines correspond to EOSs
with cold crust and the solid lines correspond to EOSs with hot crust
(the same as in Fig. 5). Note that the horizontal scale goes up to 20 km,
whereas in Fig. 5 it goes up to 30 km. The observational constrains are
the same as in Fig. 5. The two arrows indicate the shift in the M–R
relation for T = 5 and T = 15 MeV.

(refer to Fig. 6), we notice that, for a given NS radius, the central
density shifts to larger values when the hot crust is considered.

4. Conclusion

In Sharma et al. (2015), the BCPM energy density functional
was used to derive a unified EOS for cold NSs based on ab
initio BHF calculations. Astrophysical studies of core-collapse
supernovae, formation of PNSs, or the remnants of binary NS
mergers, furthermore demand modeling hot compact objects that
reach high temperatures. Here, we predicted the thermal prop-
erties of stellar matter by generalizing at finite temperature the
study with the BCPM functional. To ascertain the EOS of the hot
crust across various temperature values, we conducted hot self-
consistent TF calculations using the BCPM functional involv-
ing spherical droplet configurations within WS cells. In this first
exploration of a unified hot EOS with the BCPM functional, we
were largely driven by investigating the temperature effects on
the baryonic matter and developed our study for isothermal β
equilibrated, neutrino-transparent configurations.

A prominent feature of our findings is that in hot stars
there is a strong reduction of the value of the crust-core transi-
tion density. The microscopic calculations predict that the inner
crustal region completely dissolves at temperatures exceeding
7.21 MeV, a point we referred to as the limiting temperature.
Moreover, our analysis of the hot inner crust has unveiled two
distinct branches of the interface between uniform and clustered
matter below the limiting temperature. The branch with higher
density values represents the upper transition density, marking
the transition between the inner crust and the core; similar to the
crust-core transition at zero temperature. Conversely, the branch
with lower density values indicates a lower transition density,
which does not occur at zero temperature, suggesting the reap-
pearance of uniform matter in the outer layers of the hot NS.

Furthermore, we conducted a study on the M–R relation
at finite temperature. Here, the hot EOS obtained in our cal-
culations was complemented by the cold BCPM EOS for the
outer crust (Sharma et al. 2015), which extends up to a den-
sity of 10−4 fm−3. This step was taken to ensure vanishing pres-
sure at the surface of the star. A more accurate, and desirable,
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exploration needs a temperature profile of the star, but the lat-
ter is still uncertain; hence, we left the formulation of the cal-
culations under a NS temperature profile for a future study.
Due to the existence of the limiting temperature, above Tlim =
7.21 MeV the star consists entirely of uniform matter at densi-
ties greater than those corresponding to the border of the cold
outer crust (10−4 fm−3). Our findings highlight the growing rele-
vance of thermal effects on the M–R relation. On the one hand,
for a given NS mass, the radius increases with temperature, and
this effect is more pronounced at higher temperatures and at low
stellar masses. On the other hand, for a given NS radius, the mass
also increases with temperature but saturates to a value close to
the maximum mass of a cold NS for sufficiently high temper-
atures. When comparing our results with those obtained with a
cold crust attached to the hot core (see Fig. 6), we observed that
the thermal effects from the hot core on the M–R relation are
moderate, while the influence of the hot crust on the M–R rela-
tion is much more substantial.

To summarize, in this study, we successfully extended the
BCPM EOS, for neutrino-free β-stable matter, to finite tempera-
tures, thereby ensuring a meticulous treatment of the inner crust.
The BCPM energy density functional offers a unified micro-
scopic EOS for NSs under both cold and hot conditions. Further-
more, we determined M–R relations and central densities for hot
compact objects at various temperature levels in an isothermal
picture. Our results suggest that for NSs in hot environments,
such as the end products of NSs merger events, it is essential to
incorporate the hot inner crust.
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