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The chiral magnetic effect (CME)—a macroscopic manifestation of the quantum chiral anomaly—
induces currents along magnetic field lines, facilitating mutual conversion between chiral asymmetry
and magnetic helicity. Although the finite electron mass suppresses chiral asymmetry through spin-
flip processes, we demonstrate that the CME effectively shapes magnetar field evolution. Magnetic
helicity acts as a persistent internal source of chiral asymmetry, which mediates the redistribution
of magnetic energy across spatial scales, without requiring an external energy source. Our three-
dimensional simulations of the neutron star crust reveal a novel mechanism that significantly recon-
figures the magnetic field inherited at birth, amplifying both toroidal and poloidal large-scale dipolar
components (crucial for spin-down) to strengths of > 1014 G within just a century, at the expense
of small-scale structures. This astrophysical application of the CME, distinct and complementary
to conventional hydrodynamic dynamo models, offers an innovative framework for understanding
magnetar field dynamics and provides a transformative solution to the origin of their exceptionally
strong, large-scale fields.

The origin and evolution of magnetic fields in neutron
stars (NSs) – especially magnetars, the class with the
strongest known magnetic fields – remain subjects of ac-
tive debate [1, 2]. It is generally agreed that the large-
scale dipolar fields observed in these objects, as inferred
from spin periods and period derivatives, cannot be solely
attributed to fossil fields inherited from their progeni-
tor stars. Consequently, turbulent dynamo amplification
is often invoked to explain their extreme strengths [3–
7]. Yet despite extensive study, critical questions persist,
particularly regarding how magnetic energy transfers to
larger scales, leaving the origin of magnetar fields unre-
solved.

Beyond macroscopic hydrodynamic processes such as
dynamos and turbulence, quantum field theory estab-
lishes a fundamental microscopic connection between chi-
rality and helicity through the chiral anomaly. This phe-
nomenon facilitates a two-way transfer between fermionic
chiral asymmetry and magnetic helicity. Recent research
has increasingly focused on linking the generation of
large-scale magnetic fields to chiral asymmetries pro-
duced during core-collapse supernovae and the proto-NS
phase [8, 9]. However, significant challenges persist, most
notably the efficiency of spin-flip scattering processes in-
duced by the finite electron mass, raising doubts about
the CME’s relevance in these environments (see Kamada
et al. [10] for a review on the CME in different scenarios).
The rapid, temperature-dependent spin-flip reactions re-
duce the chiral imbalance, constraining the effectiveness
of the chiral instability mechanism [11, 12].

The concept that a pre-existing helical magnetic field
at short wavelengths could experience an inverse-like cas-
cade driven by chiral asymmetry, ultimately generating
large-scale magnetic fields, has been proposed in the con-
text of the early Universe [13–15], but has been consid-
ered far less often in stellar environments [9, 16]. In
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this work, unlike previous studies, we incorporate chi-
ral effects into the study of NSs, explicitly accounting
for spin-flip scattering processes in our numerical simu-
lations. We explore the long-term interaction between
magnetic helicity and chiral asymmetry during the early
stages of NS evolution. The simulations reveal that, while
spin-flip processes significantly suppress chiral effects,
residual asymmetries can persist for hundreds of years,
enabling sustained energy transfer from small to large
scales. In this context, the chiral anomaly acts as a cata-
lyst, potentially reorganizing turbulent magnetic fields—
originally generated by dynamo processes—to form a co-
herent, large-scale dipolar field.
The mechanism operates as follows: a small but sus-

tained imbalance between left- and right-handed elec-
trons generates an electric current parallel to the mag-
netic field—an effect known as the Adler-Bell-Jackiw
anomaly [17, 18]. This imbalance is quantified by the
chiral chemical potential µ5 ≡ µR − µL

1, where µR and
µL are the chemical potentials of right- and left-handed
electrons, respectively. A non-vanishing µ5 implies that
magnetic field evolution in NS interiors must include an
effective chiral degree of freedom, despite being within
the Standard Model. When µ5 ̸= 0, Maxwell’s equations
acquire an additional current term [19]:

J5 =
αµ5

πℏ
B, (1)

where α = e2/ℏc is the fine structure constant, e is
the fundamental charge, ℏ is the reduced Planck con-
stant, and c is the speed of light. We use Gaussian units
throughout the paper.
In an MHD context, the chiral current (J5) acts analo-

gously to a dynamo, amplifying magnetic fields by draw-
ing on the energy stored in the chiral chemical potential.

1 Note that definitions of µ5 vary in the literature, sometimes dif-
fering by a sign [12] or a factor of 2 [16], depending on the source.
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Notably, it can have either sign and reverse the process
– tapping magnetic energy to generate chirality. In this
letter, we examine this microphysical mechanism as an
alternative – or more precisely, a complement – to clas-
sical hydrodynamical dynamos in explaining magnetar
fields.

NSs exhibit a complex internal structure with multiple
fluid components, each possessing distinct hydrodynam-
ical velocities. In the outer crust, a rigid ionic lattice
severely limits ion mobility, allowing only electrons to
flow freely and sustain the currents essential for mag-
netic field evolution. The inner crust introduces added
complexity with superfluid neutrons, which partially de-
couple from the nuclear lattice and act as a neutral fluid
component. Complexity peaks in the NS core, where
coexisting superfluid neutrons and superconducting pro-
tons necessitate a sophisticated multi-fluid framework.
Given this complexity, magnetic field evolution is typ-
ically studied using region-specific approximations. In
this context, we focus on the crust, where only (slowly
drifting) electrons are mobile within the solid ionic lat-
tice, making the e-MHD approximation applicable [20].
The magnetic field evolution is then governed by the in-
duction equation derived from Faraday’s law:

∂B

∂t
= −c∇×E, (2)

where the electric field accounts for Ohmic dissipation,
Hall drift, and the new chiral magnetic contribution:

cE = η (∇×B − k5B) + fh (∇×B)×B. (3)

Here, η = c2/4πσe is the magnetic diffusivity, where σe

is the electrical conductivity; k5 = 4αµ5/ℏc is the chiral
wavenumber; and fh = c/4πene is the Hall prefactor,
with ne the electron number density.

Magnetic field evolution must be coupled to the evolu-
tion equation for the chiral number density n5 ≡ nR−nL

[10, 11, 17, 21], which includes both source and sink
terms:

∂n5

∂t
=

2α

πℏ
E ·B + neΓ

eff
w − n5Γf . (4)

Here, the reaction rate Γf accounts for spin-flip interac-
tions and acts as a sink term, while Γeff

w represents the
effective weak reaction rate [22] and serves as a source.
The E · B term governs the coupling between the chi-
ral density and the electromagnetic field: twisting or un-
twisting magnetic field lines alters the net chirality in the
system, acting as either a source or a sink depending on
its sign.

Equation (4) should be viewed alongside the time evo-
lution of the magnetic helicity, which takes the form
[13, 23]:

∂(A ·B)

∂t
= −2cE ·B − c∇ · (E ×A) . (5)

The two equations, when combined and integrated over
a volume, yield a generalized helicity balance law:

d

dt

(
Q5 +

α

πℏc
χm

)
+ Γ5 = 0. (6)

Here, Q5 =
∫
n5 dV is the total axial charge, χm =

∫
A ·

B dV is the total magnetic helicity, and Γ5 =
∫
n5ΓfdV

is the average spin-flip rate. Total helicity is not strictly
conserved due to the sink term Γ5. We neglect both
the helicity flux across the boundary (∝ E ×A) and the
weak interaction processes (Γeff

w ≪ Γf ), as their contri-
butions are marginal. Weak interactions could, however,
transiently enhance the effect if the NS is out of chemi-
cal equilibrium. For simplicity, we set Γeff

w = 0 hereafter,
since its typical values (10−2 − 102 s−1) are many orders
of magnitude smaller than the spin-flip rates (Eq. (7)).
Concerning the spin-flip reaction rate, electrons inter-

act via Rutherford, electron-electron, or Compton scat-
tering. In the core, Rutherford scattering dominates
[12, 24], while in the crust, electron-nucleus scattering
prevails. For degenerate electrons, the flip rate is given
by [25]:

Γf =
4α

3πσe

m2
ec

4

ℏ2
, (7)

which is on the order of 1015−1017 s−1 under typical neu-
tron star conditions during the first few centuries. Since
σe depends on temperature, so does Γf , underscoring the
need to consider the coupled evolution of temperature
and magnetic field in simulations.
Given that all reaction rates are much faster than typ-

ical astrophysical timescales, we treat all quantities in
Equation (4), except the chiral density n5, as constant in
time to derive an analytical solution:

n5(t) =

(
2α

πℏ
E ·B
Γf

)(
1− e−Γf t

)
+ n0

5e
−Γf t, (8)

where n0
5 is the initial chiral number density. On as-

trophysical timescales (t ≫ Γ−1
f ), the system reaches a

quasi-equilibrium state:

n5(t) ≈
2α

πℏ
E ·B
Γf

. (9)

The chiral chemical potential µ5 is related to the
chiral number density n5 via the standard expression
n5 = µ2

eµ5/(π
2(ℏc)3), valid in the regime of highly de-

generate NS matter where µe ≫ T . Substituting the
expression for E ·B into Equation (9), we obtain an ex-
plicit expression for k5:

k5 (x, t) =
(∇×B) ·B
µ2
e

8πα2η (ℏc)
Γf +B2

=
(∇×B) ·B(

2µ2
e

m2
ec

4

)
B2

QED

3π
+B2

,

(10)
and BQED ≡ m2

ec
3/(e ℏ) = 4.41×1013 G is the Schwinger

QED critical field.
Equation (10) highlights the two main contributions

to the chiral asymmetry: the numerator originates from
magnetic helicity and increases when the pointwise cur-
rent helicity density, B · (∇×B), grows – that is, when
∇ × B becomes increasingly aligned with B [26]. This



3

alignment characterizes the so-called helical magnetic
fields, where toroidal and poloidal components reinforce
each other. In contrast, the spin-flip term in the de-
nominator suppresses chiral asymmetry. If the magnetic
field configuration possesses a non-zero average magnetic
helicity, a small but appreciable chiral asymmetry can
be sustained despite the action of spin-flip processes. In
this regime, where a nonzero chiral asymmetry is sus-
tained and k5 evolves in quasi-equilibrium, one can insert
Equation (10) into Equation (3), explicitly factoring out
the chiral anomaly from the induction equation. Conse-
quently, k5 acts as a catalyst for energy transfer across
scales, making the magnetic field evolution depend solely
on the field itself. In this formulation, the chiral con-
tribution manifests as a nonlinear correction associated
with the current component parallel to B, while the Hall
term emerges as a quadratic nonlinearity in B, governed
by the current component perpendicular to the field.

Defining the characteristic wavenumber associated
with the current parallel to the magnetic field as

kB ≡ (∇×B) ·B
B2

, (11)

we can write

k5 =
kB

1 +

(
2µ2

e

m2
ec

4

)
B2

QED

3πB2

. (12)

In the weak-field regime (B ≪ BQED), we find k5 ∝
kBB2/B2

QED ≪ kB. In the strong-field regime (B >

BQED), k5 is ultimately bounded by kB (k5 ≲ kB).
To estimate the characteristic magnetic field strength

at which saturation sets in, we equate the two terms in
the denominator of Equation (10). This condition is sat-
isfied when:

Bsat ≈
√

2

3π

µe

mec2
BQED. (13)

The saturation field Bsat scales linearly with the ratio
µe/(mec

2), which increases with density. Under typical
NS conditions, this ratio ranges from 10 in the outer crust
to 200 in the inner crust, yielding Bsat ∼ 1014 G near
the surface and up to ∼ 5 × 1015 G in deeper layers—
consistent with inferred magnetar field strengths.

It is insightful to explicitly write the conservation equa-
tions for electromagnetic energy and the additional elec-
tron energy from chiral imbalance (see [16] for a thorough
discussion on energy conservation):

∂εem
∂t

= −σeE
2 − αµ5

πℏ
E ·B − c

4π
∇ · (E ×B) ,

∂ε5
∂t

= −1

2
µ5n5Γf +

αµ5

πℏ
E ·B . (14)

Here, εem = B2/8π and ε5 = µ5n5/2, with each term on
the right-hand side plays a distinct role. The first term
in both equations represents a sink: Joule dissipation for

magnetic energy and spin-flip processes for chiral energy.
The final term in the magnetic energy equation corre-
sponds to the Poynting flux, which becomes a surface
term upon volume integration. The E ·B terms describe
the conservative exchange of energy between the mag-
netic field and chirality.
Integrating over the stellar volume, the total energy

balance reads:

d

dt
(Eem + E5) + Stot +Qtot + Γ5tot = 0, (15)

where Eem and E5 are the volume integrals of εem and

ε5, respectively. Stot =
c

4π

∮
dS · (E ×B) is the total

Poynting flux, Γ5tot = 1
2

∫
µ5n5Γf dV is the total spin-

flip dissipation rate, and Qtot is the total Joule dissipa-
tion, given by:

Qtot =

∫
σeE

2dV. (16)

In the absence of the Hall drift term, cE =
η (∇×B − k5B), and the chiral correction can offset
magnetic dissipation if ∇×B ≈ k5B.
To assess the impact of the CME on magnetic field

evolution in NSs, we performed magneto-thermal simu-
lations using an extended 3D finite-volume version of the
MATINS code [27–29]. This version solves the coupled
induction and heat diffusion equations, consistently in-
corporating chiral and spin-flip terms arising from the
chiral anomaly. To focus on the NS crust, we apply
potential-field boundary conditions (current-free magne-
tosphere) at an outer numerical boundary located at
ρ = 1010 g cm−3, near the transition between the liq-
uid envelope and the solid crust. At the crust–core in-
terface, we impose perfect-conductor boundary condi-
tions. The temperature-dependent electrical conductiv-
ity is computed at each point of the star using the codes
from the IOFFE repository2 [30]. In MATINS, the NS
background model can be constructed using various zero-
temperature equations of state (EOS) from the Com-
pOSE online database3. For this study, we adopt the
BSk24 EOS [31], assuming a canonical NS with mass
M = 1.4M⊙, radius R = 12.4 km, and crustal thickness
of 0.86 km.
Magnetic helicity plays a central role in magnetic

field dynamics [32], enabling inverse cascades that trans-
fer energy from small to large scales. In NS crusts,
such cascades are typically driven by the Hall effect on
Hall timescales [33, 34]. However, Dehman & Branden-
burg [34] showed that, although present, this process fails
to significantly amplify the large-scale dipolar field due
to the crust’s extreme radial-to-angular aspect ratio. To
isolate and better assess the role of chirality, we deliber-
ately disable the nonlinear Hall term and focus solely on
the impact of the CME.

2 http://www.ioffe.ru/astro/conduct/
3 https:/compose.obspm.fr/

http://www.ioffe.ru/astro/conduct/
https:/compose.obspm.fr/
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As detailed in Section II of the Supplemental Material,
we initialize our simulations with a turbulent, partially
helical4 magnetic field (see Appendix A of Reiseneg-
ger [35]) with B ≫ Bsat, concentrated at very small
scales and with an average strength of ∼ 1016 G [6, 36].
The field is initially divided between poloidal and toroidal
components, with a dominant toroidal contribution, con-
sistent with the small-scale energy spectra predicted by
proto-NS dynamo simulations [6]. We limit the dipo-
lar component to a few 1012 G, much weaker than the
large-scale fields inferred observationally for magnetars.
The total magnetic energy, of order a few 1049 erg, re-
mains small compared to the star’s gravitational binding
energy (∼ 1053 erg) or the rotational energy of a millisec-
ond pulsar (∼ 1051−52 erg).
The magnetic energy spectrum peaks at ℓ0 ≈ 50, ex-

tends up to ℓmax = 70, and follows a ℓ4 slope. We con-
sider three initial setups: (i) Full Slope (Run F), pre-
serving the full ℓ4 spectrum and naturally concentrating
energy near ℓ0; (ii) Damped (Run D), where the mag-
netic energy is attenuated by roughly two orders of mag-
nitude for ℓ = 1 . . . 20, concentrating the remaining en-
ergy between ℓ = 21 and ℓ0; and (iii) Damped–No CME
(Run DO), a replica of Run D without CME. The radial
wavenumber is set to kr ≈ 400 km−1 (Figure 3), balanc-
ing the fastest-growing CME modes – characterized by
chiral wavelengths of a few meters – against Ohmic dissi-
pation. To resolve these small scales, we adopt Nr = 200
radial points, reflecting the CME’s strong sensitivity to
microphysical properties (e.g., η and µe), which vary pri-
marily with radius. Angular directions are discretized
using a cubed-sphere grid [27], with Nξ = Nη = 47
points per patch across six patches, yielding Nθ = 94
and Nϕ = 188 grid points, and resolving angular struc-
tures down to a few hundred meters. Starting from these
initial conditions, we run three global NS crust simu-
lations, evolving each over the first few hundred years
with a timestep of days—consistent with the ages of the
youngest magnetars, such as Swift J1818.0–1607 (∼ 200
yr; [37]).

In the absence of spin-flip processes (an unphysical
case), the axial charge Q5 would grow to match the ini-
tial magnetic helicity

(
α

π ℏ c χm

)
, conserving total helicity.

However, spin-flip scattering restores chiral balance, sup-
pressing Q5 by nearly 20 orders of magnitude, leaving a
tiny residual – sufficient to drive chiral-induced magnetic
field evolution. See Section III in the Supplemental Ma-
terial for details.

To assess the impact of this residual asymmetry, Fig-
ure 1 shows the total magnetic energy spectra for Run D
(left) and Run F (right) at t = 0, t = 30 yr, and t = 300

4 A single-mode helical field is force-free, with the current every-
where parallel to the magnetic field

(
(∇ × B) ∥ B

)
, leading to

a zero Lorentz force. However, combining modes with different
wavenumbers generally does not produce a force-free condition
due to mode interactions.

yr. A significant energy transfer—about two orders of
magnitude—occurs toward multipoles with initially weak
fields (ℓ ≤ 20), as the emergence of a nonzero k5 enables
the CME to redistribute magnetic energy across spatial
scales, boosting weaker regions at the expense of stronger
ones. A particularly striking feature is the strong amplifi-
cation of the dipolar component (ℓ = 1), marking the nat-
ural formation of the largest and hardest-to-form scale.
In Run D, the initial slope, nearly linear in ℓ for ℓ ≤ 20, is
preserved but amplified. Conversely, in Run F, the slope
at large scales gradually evolves toward a similar linear
dependence on ℓ. Ultimately, both runs yield compara-
ble magnetic energy spectra, suggesting that each mode
saturates at a distinct characteristic amplitude. In both
cases, the CME preserves the spectral peak at ℓ0, which
– being at small scales – is more susceptible to Ohmic
dissipation over tens of kiloyears. By contrast, an in-
verse cascade typically shifts the peak toward lower ℓ,
enhancing the longevity of the large-scale field [33].

While this process may resemble an inverse cascade,
its underlying mechanism is fundamentally different. In
the presence of a helical magnetic field (as in our config-
uration) and an active Hall term, an inverse cascade can
occur, though its impact is typically much weaker [34].
In such cases, nonlinear interactions—specifically those
involving the component of the current density perpen-
dicular to the magnetic field—transfer energy and helic-
ity to larger scales through mode couplings that satisfy
k = p + q with |k| ≤ max(|p|, |q|), as demonstrated by
Frisch [38]. By contrast, the CME, which involves the
component of the electric current parallel to the mag-
netic field, operates simultaneously and independently on
all multipoles (see Section I of the Supplemental Mate-
rial), enabling the redistribution of magnetic energy from
small to larger scales in our simulations.

Figure 2 illustrates the decay of the average magnetic
field (mauve, left axis) alongside the growth of the dipolar
field (black, right axis). Note the different scales on the
left and right vertical axes. Run F, Run D, and Run DO
are represented with solid, dash-dotted, and dotted lines,
respectively.

As expected, the average magnetic field decreases over
time in all three runs. For reference, we show with dots
Run DO including only Ohmic dissipation. We observe
a rapid decay of the initial small-scale magnetic field fol-
lowing ∝ exp (−t/τOhm) , with τOhm ≡ 1/ηk2 ≈ 20 . . . 25
yr. The initially weak dipolar field also undergoes decay,
though at a slower rate due to its smaller wavenumber k.

In contrast, the CME is active in Runs F and D, trans-
ferring a portion of the energy from the small-scale initial
magnetic field to the dipolar component, which conse-
quently grows over time. It is worth noting that overall
dissipation is significantly slower than in Run DO, as
the self-regulating chiral current effectively counteracts
much of the original electric current along the magnetic
field lines, thereby reducing the net Joule dissipation rate
(Eq. (16)).

In Runs F and D, we identify three distinct stages
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FIG. 1. Magnetic energy spectra for Run D (left) and Run F (right) as a function of multipole degree ℓ. Spectra are shown at
t = 0 (yellow), t = 30 yr (dark gray), and t = 300 yr (dark blue), with a reference ℓ4 slope overplotted in light gray.

0 10 1 100 101 102

Time [yr]

1016

4 × 1015

6 × 1015

2 × 1016

3 × 1016

4 × 1016

B
[G

] exp (
t/

Ohm )

1012

1013

1014

B
=

1
[G

]

ex
p (

t/
5)

Run F
Run D
Run DO

FIG. 2. Time evolution of the average magnetic field (mauve,
left axis; scaling from 4 × 1015 G to 4 × 1016 G) and dipolar
field (black, right axis; scaling from 1012 G to 2×1014 G). Solid
lines correspond to Run F, dash-dotted lines to Run D, and
dotted lines to Run DO. Gray lines show fits to the growth
and decay phases, with τOhm ≡ 1/ηk2 ≈ 20 . . . 25 yr and
τ5 ≡ 1/ηkk5 ≈ 5 . . . 10 yr.

in the growth of the dipolar components. During the
initial few months (t ≤ 0.1 yr), little noticeable differ-
ence appears, as the chiral asymmetry is still developing
from the initial turbulent average field. This is followed
by a gradual growth phase lasting 20 to 30 years, and
then by a second, exponential growth phase spanning
several decades. We interpret this latter phase as a man-
ifestation of the chiral magnetic instability (CMI), with
the growth approximately following ∝ exp(t/τ5), with
τ5 ≡ 1/ηkk5 ≈ 5 . . . 10 yr. As expected, the growth sat-
urates at B ≳ 1014 G after ∼ 100 yr, consistent with

magnetar observations. For a detailed analysis of the
magnetic field evolution in Run F, see Section III of the
Supplemental Material.

Our research reveals that magnetic helicity, a classical
attribute, triggers a subtle chiral asymmetry—a quan-
tum anomaly—in macroscopic astrophysical bodies like
NSs. This faint chirality significantly shapes magnetic
field evolution over centuries, overcoming robust spin-flip
suppression. The CME restructures the magnetic field
spectrum by redistributing energy across scales, converg-
ing toward a nearly linear slope in multipole degree ℓ,
particularly for ℓ < 10, which governs large-scale astro-
physical observables. This linearity arises because each
mode saturates at its characteristic amplitude.

An initial intense (1016 G) very small-scale field natu-
rally evolves into a mixed poloidal/toroidal dipolar field,
amplified to 1014 G—consistent with observed magnetar
strengths. Although small-scale fields initially persist af-
ter this short stage (lasting 100 years), they are more
prone to Ohmic decay and will dissipated in a few thou-
sand years. This strong small-scale field may potentially
drive the high X-ray luminosities (LX ≳ 1035 erg/s) and
burst activity, due to energy stored at small scales [39].
Conversely, the large-scale dipolar field decays more
gradually, persisting as a long-lived feature. This inter-
action between magnetic helicity and the chiral anomaly
establishes a novel framework for understanding magne-
tar field evolution.

A key insight from our study is the geometry of the re-
sulting magnetic field. Previous research [27, 28, 39–43]
on long-term magneto-thermal evolution indicate that
crust-confined fields with prominent large-scale struc-
tures align best with observational data. However, gen-
erating such configurations is difficult, as conventional
proto-NS dynamo processes create intense small-scale
turbulence but struggle to produce crust-confined large-
scale dipolar fields. Our work introduces a mechanism
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that naturally achieves this geometry. We have pre-
sented the first self-consistent, long-term simulations of
the CME-driven magnetic evolution, establishing this
mechanism as a key ingredient for magnetar dynamics.

Enhancing numerical resolution at small scales is an-
ticipated to amplify the observed effects further, and we
plan to refine this in future simulations. This study
specifically isolates the CME under strong magnetic fields
by deliberately excluding the nonlinear Hall term, en-
abling a clear analysis of the CME role. A future in-
vestigation will explore the impact of the Hall effect on
the chiral anomaly. Preliminary results suggest that the
Hall effect has a limited influence on the early-time (100
years) evolution, the focus of this paper, as it generally
operates over longer timescales.
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Supplemental Material

In the subsequent sections, we initially break down the induction equation (omitting the Hall term) into its poloidal
and toroidal components to show how the chiral current links the different modes (Section I). Although Section I
presents a simplified toy model, treating the chiral wavenumber k5 and magnetic diffusivity η as constants for a clear,
quasi-analytical illustration of the proposed mechanism, the simulations themselves were performed using a full 3D
code, without these simplifying assumptions. We then describe the setup of the initial magnetic field used in this
study (Section II).

I. SIMPLIFIED DISCUSSION OF THE CME IN THE INDUCTION EQUATION

The magnetic field can be decomposed into poloidal (Bp) and toroidal (Bt) components as follows [44]:

B = Bp +Bt, (17)

Bt = −r ×∇Ψ, At = −r ×∇Φ,

Bp = ∇×At = −r∆Φ+∇ ∂

∂r
(rΦ) , (18)

where At is the toroidal vector potential. The two scalar functions Φ(r, t) and Ψ(r, t) uniquely define the poloidal
and toroidal components, respectively.

The induction equation (Eq. (2)) can also be decomposed into poloidal and toroidal parts. Neglecting the Hall
term and retaining only the Ohmic and chiral contributions, one can follow the same methodology as in Geppert &
Wiebicke [45] to obtain

∂Φ

∂t
= η (∆Φ + k5 Ψ) ,

∂Ψ

∂t
= η (∆Ψ− k5∆Φ) . (19)

The additional term proportional to k5 accounts for the CME. For clarity, we have omitted the spatial (radial and
angular) dependence of the magnetic diffusivity η and the chiral wavenumber k5, and assumed they are constants.
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Next, we expand the scalar functions in spherical harmonics [46]:

Φ(t, r, θ, ϕ) =
1

r

∑
ℓm

Φℓm(r, t)Yℓm(θ, ϕ),

Ψ(t, r, θ, ϕ) =
1

r

∑
ℓm

Ψℓm(r, t)Yℓm(θ, ϕ), (20)

where ℓ = 1, 2, . . . denotes the multipole degree and m = −ℓ, . . . , ℓ the azimuthal order. Equation (19) yields a set of
equations that couples the toroidal and poloidal components of each multipole, taking the following form:

∂Φℓm

∂t
= η ∆Φℓm + η k5 Ψlm,

∂Ψℓm

∂t
= η ∆Ψℓm − η k5 ∆Φℓm, (21)

where

∆ ≡
(

∂2

∂r2
− ℓ (ℓ+ 1)

r2

)
. (22)

Note that incorporating the spatial dependence of η and k5 would introduce additional coupling terms in the equations.
In this form, the role of k5 becomes evident. First, it couples independently to all multipoles (ℓ,m) of the toroidal and
poloidal components. Second, the evolution equations show that an initial poloidal (or toroidal) field acts as a source
in the toroidal (or poloidal) evolution equation, naturally generating its complementary counterpart and driving the
system toward an approximate equipartition of magnetic energy between the two. However, this coupling is inherently
asymmetric: the poloidal field couples directly to the toroidal magnetic component, while the toroidal field couples
to the toroidal current (i.e., the curl of the poloidal component).

To simplify the discussion, we introduce additional notation. The Laplacian operator acts on each mode as

∆ → −(k2r + k2ang), (23)

where kr characterizes the radial dependence (i.e., ∂/∂r → ikr), and the angular wavenumber is kang =
√
ℓ(ℓ+ 1)/r,

reducing the equations to:

∂Φℓm

∂t
= −η (k2Φℓm − k5Ψlm),

∂Ψℓm

∂t
= −η (k2Ψℓm − k5 k2Φℓm). (24)

Consider a field satisfying the condition Ψℓm = kΦℓm. The equations then become

∂Φℓm

∂t
= −η k(k − k5)Φlm,

∂Ψℓm

∂t
= −η k(k − k5)Ψℓm, (25)

which admit exponentially growing or damped modes, depending on the sign of k − k5. For k > k5, the instability
is suppressed by Ohmic dissipation (if k5 is negative, dissipation is even enhanced). In contrast, for k < k5, the
CMI develops, and the fastest-growing chiral modes (k ≈ k5/2) dominate. These fastest-growing chiral modes are
associated with small-scale magnetic structures (typically ranging from centimeters to meters), characterized by the
CME wavelength:

λ ≡ π

k5
=

πℏc
4αµ5

. (26)

II. INITIAL MAGNETIC FIELD STRUCTURE AND OPTIMAL CME MODE

All the microphysical properties relevant for the CME in the NS interior (e.g., magnetic diffusivity η, electron
chemical potential µe), vary rapidly in the radial direction, and to a lesser extent in angular directions due to possible
temperature anisotropies. Since the crust is very thin compared to the star’s perimeter, radial gradients are expected
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FIG. 3. Maximum (µmax
5 in units of 10−11 MeV; red diamonds) and average (µavg

5 in units of 10−12 MeV; blue diamonds)
chiral chemical potentials as functions of the radial wavenumber kr, computed at the initial time for an average magnetic field
of a few 1016 and a temperature of T = 109 K. The peak occurs at k0 ≈ 400 km−1, corresponding to a wavelength λ ≈ 14 m.
The gray dashed curve shows an asymmetric Gaussian fit, µmax

5 (kr) = µ0
5 exp

[
−(kr − k0)

2/(2σ2
±)

]
, with different widths σ−

and σ+ on either side of the peak. Here, µ0
5 ≡ µmax

5 (k0) ≈ 2.5× 10−11 MeV.

to dominate the dynamics. This highlights the need for higher radial resolutions in the simulations. Thus, one can
expect kr ≫ kang, and we can approximate k2 ≈ k2r .
Guided by this insight, we construct the initial magnetic field in the NS crust using MATINS by prescribing the

angular and radial profiles of the scalar functions Φ(r, t=0) and Ψ(r, t=0) (see Eq. (20)).
The radial function Φℓm takes the following form [47]:

Φℓm(r) = Φ0
ℓm krr (a+ tan(krR) b), (27)

where a and b are chosen to satisfy the inner and outer boundary conditions [47], and Φ0
ℓm are normalization factors

evaluated at a reference radius, just beneath the stellar surface R⋆. These weights are chosen to concentrate magnetic
energy at small angular scales, following a spectral slope proportional to ℓ4 in the sub-inertial range (ℓ < ℓ0), where
ℓ0 denotes the spectral peak [48].

We encode magnetic helicity by directly relating the toroidal scalar function via:

Ψℓm(r) = αℓm Φℓm(r), (28)

where, being conservative, we set αℓm =
√
ℓ(ℓ+ 1)/R , where R is the radius at the surface of our computational

domain. For a maximally helical field, one should choose αℓm = k.
Employing curl operators adapted to cubed-sphere coordinates [27], we derive the magnetic field components from

these scalar functions using Equation (18). This method guarantees an initial magnetic field that is divergence-free (to
machine precision), free of axis singularities, and intrinsically helical—a key property for investigating CME-driven
magnetic evolution.

The radial direction in the crust is resolved with 200 grid points, capturing structures down to a few meters.
Angular directions are discretized using a cubed-sphere grid [27], with Nξ = Nη = 47 points per patch across six
patches, yielding Nθ = 94 and Nϕ = 188 grid points, and resolving multipoles up to ℓmax ∼ 70, corresponding to
angular scales of a few hundred meters. With this setup, we vary the radial wavenumber kr while keeping the initial
average magnetic field and temperature fixed. For each configuration, we compute the predicted average (µavg

5 ) and
maximum (µmax

5 ) values of the initial chiral chemical potential µ5(x).
Figure 3 summarizes the results: maximum (red diamonds) and average (blue diamonds) values of µ5 as functions

of kr, evaluated for a mean magnetic field of a few 1016 G concentrated at small scales and a temperature of 109 K—
typical of young magnetars. The optimal radial wavenumber is found at k0 ≈ 400 km−1, corresponding to a wavelength
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λ0 ≈ 14 m, and we ensure that this scale is resolved by our radial grid. Notably, the values of µ5 are many orders of
magnitude smaller than the electron chemical potential (µe ≈ 10 . . . 100 MeV), yet they lead to significant changes in
the field evolution.

III. DETAILED ANALYSIS OF MAGNETIC FIELD EVOLUTION

In this section, we present an extended analysis of Run F. We examine the growth of the dipolar magnetic field,
the decay of the mean magnetic field, and the energy transfer between poloidal and toroidal components. We also
assess the conservation of total helicity and energy, as outlined in our theoretical framework.
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FIG. 4. Time evolution of the mean magnetic field (left panel) and the dipolar magnetic field (right panel) for Run F. Solid
lines show the total field, dash–double-dotted lines the toroidal component, and dotted lines the poloidal component.

Figure 4 shows the time evolution of the average magnetic field (left panel) and the dipolar magnetic field (right
panel) for Run F. The toroidal (dash-double-dot) and poloidal (dotted) contributions are also shown. In contrast to
Figure 2 in the main text, this figure highlights the interplay between the toroidal and poloidal components. Three
distinct stages are observed in the decay of the total magnetic field and the growth of the dipolar field: i) Early stage
(t ≲ 0.1 yr): Both the total and dipolar magnetic fields remain nearly constant. This reflects the initial buildup of the
CME, during which the chiral asymmetry is still developing and its dynamical effects are negligible. ii) Intermediate
stage (up to ∼ 30 yr): A modest decline in the total magnetic field begins, primarily due to the dissipation of the
dominant toroidal component. During this stage, the CME becomes active, transferring energy from the toroidal
field to the initially subdominant poloidal field. At the same time, we observe in the right panel the simultaneous
growth of both components of the dipolar field. Energy is continuously exchanged between them, maintaining an
approximate equipartition. iii) Late stage (beyond ∼ 30 yr): At this point, the growth of the poloidal component
in the total field halts. Both components have reached similar strengths and begin to dissipate at comparable rates.
Meanwhile, the dipolar field exhibits exponential growth, ∝ exp(t/τ5), with τ5 ≈ 5 . . . 10 years—signaling the onset
of the CMI. During this process, both components of the dipolar field reach 1014 G. After about a hundred years, the
growth saturates.

For completeness, Figure 5 shows the generalized helicity (Eq. (6)) in the left panel and the total energy conservation
(Eq. (15)) in the right panel, both for Run F. The left panel shows the time evolution of three quantities: the total
helicity Q5 + α

π ℏ c χm (dashed blue); the losses due to the spin-flip term at each time step −Γ5 ∆t (dash-dotted
orange), representing the number of right-handed electrons flipping to left-handed ones in the entire crust during one
time step; and Q5 itself (dotted teal), which reflects the total excess of right-handed electrons. The figure illustrates
how the magnetic helicity generates an extremely small Q5 (20 orders of magnitude smaller), which remains nearly
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constant. This is due to the strong damping effect of the spin-flip term. In the absence of spin-flip processes, Q5

would grow until it is of the order of the magnetic helicity. Moreover, the figure confirms that our simulations
respect the generalized helicity conservation law (Eq. (6)): the change in total helicity is closely balanced by the
spin-flip term, as predicted by theory. Minor discrepancies at early times (within the first few years) arise from
adjustments of the initial transient stage, and are caused by small surface helicity fluxes (∝ E ×A) due to numerical
limitations imposing boundary conditions. These surface contributions decay rapidly as the system self-adjusts over
a few iterations. Although reducing the timestep improves precision, it significantly increases computational cost.
Nonetheless, helicity is conserved to a satisfactory degree for the purposes of this analysis.
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FIG. 5. Generalized helicity and energy conservation. Left panel (Eq. (6)): Time evolution of the total helicity Q5 +
α

π ℏ c
χm

(dashed blue), the losses due to the spin-flip term at each time step −Γ5 ∆t (dash-dotted orange), and the resulting axial charge
Q5 (dotted teal). All quantities are in non-dimensional form. Right panel (Eq. (15)): Time evolution of the electromagnetic
energy Eem (solid blue), the Joule dissipation −

∫
Qtot dt (dashed red), the Poynting flux −

∫
Stot dt (dashed green), the total

flip term −
∫
Γ5tot dt (dash-dotted purple), the chiral energy E5 (dotted orange-red), and the total energy Etot (solid black).

To further ensure the physical robustness of our results and rule out numerical artifacts, we analyze the total energy
balance (Eq. (15)). Before proceeding, we briefly examine the evolution equations for the electromagnetic energy and
the energy associated with the chiral imbalance:

∂Eem

∂t
= −Qtot −

∫
dV

αµ5

πℏ
E ·B − Stot,

∂E5

∂t
= −Γ5tot +

∫
dV

αµ5

πℏ
E ·B . (29)

In the quasi-equilibrium regime considered here, the timescale of the spin-flip term is much shorter than that of chiral
density evolution, so ∂n5/∂t → 0 and hence ∂E5/∂t → 0. It follows that

Γ5tot =

∫
αµ5

πℏ
E ·BdV . (30)

The electromagnetic energy evolution then simplifies to:

∂Eem

∂t
= −Qtot − Stot − Γ5tot . (31)

We define the total energy, Etot, which should remain constant over time, as:

Etot = Eem −
∫

Qtot dt−
∫

Stot dt−
∫

Γ5tot dt. (32)

The right panel of Figure 5 shows the time evolution of all relevant energy components, including electromagnetic
energy (Eem), cumulative Joule dissipation (−

∫
Qtot dt), net Poynting flux (−

∫
Stot dt), the total spin-flip dissipation
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(−
∫
Γ5tot dt). Denoting a global (or total) wavenumber by k2tot ≡ (∇×B)

2
/B2, Qtot and Γ5tot can be expressed as

Qtot =
1

4π

∫
dV η(∇×B − k5B)2 ∝

(
k2tot + k25 − 2k5kB

)
B2, (33)

Γ5tot =
1

4π

∫
dV η(∇×B − k5B) · k5B ∝

(
k5kB − k25

)
B2. (34)

Notably, both expressions are structurally similar and are expected to be of comparable magnitude, differing mainly
due to the distinction between the global wavenumber ktot and the parallel wavenumber kB. The k5 corrections
in Equation (33) have a significant dynamical impact: they enhance dissipation when k5kB is negative, reduce it
when positive, and can completely offset magnetic dissipation when kB = k5. Overall, the total energy Etot remains
conserved to within less than 1% throughout the simulation, with gradual magnetic energy loss dominated by Ohmic
dissipation.
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