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Constraints on the dense matter equation  
of state from young and cold isolated 
neutron stars

A. Marino    1,2  , C. Dehman    1,2  , K. Kovlakas    1,2  , N. Rea    1,2  , 
J. A. Pons    3 & D. Viganò    1,2

Neutron stars are the dense and highly magnetic relics of supernova 
explosions of massive stars. The quest to constrain the equation of state 
(EOS) of ultradense matter and thereby probe the behaviour of matter inside 
neutron stars is one of the core goals of modern physics and astrophysics.  
A promising method involves investigating the long-term cooling of neutron 
stars, comparing theoretical predictions with various sources at different 
ages. However, limited observational data, and uncertainties in source 
ages and distances, have hindered this approach. Here, by re-analysing 
XMM-Newton and Chandra data from dozens of thermally emitting isolated 
neutron stars, we have identified three sources with unexpectedly cold 
surface temperatures for their young ages. To investigate these anomalies, 
we conducted magneto-thermal simulations across diverse mass and 
magnetic fields, considering three different EOSs. We found that the 
’minimal’ cooling model failed to explain the observations, regardless of the 
mass and the magnetic field, as validated by a machine learning classification 
method. The existence of these young cold neutron stars suggests that any 
dense matter EOS must be compatible with a fast cooling process at least in 
certain mass ranges, eliminating a significant portion of current EOS options 
according to recent meta-modelling analysis.

Neutron stars are incredibly dense objects with densities several times 
that of atomic nuclei (ρ ≈ 1014 g cm3). They hold unique information 
about the properties and behaviour of matter under extreme conditions 
of densities and magnetic fields1–3. Their internal structure, mass–
radius relationship and overall behaviour relies on a unique equation of 
state (EOS), which describes the relationship between pressure, density 
and composition, in a regime unreachable in Earth laboratories. The 
EOS not only determines the structure, cooling rates and rotational 
properties of neutron stars but also has a role in astrophysical phe-
nomena such as gravitational wave signals emitted during mergers 
with other neutron stars or black holes. Deciphering the actual EOS 
of dense matter is a key open question for several branches of physics.

Constraining the dense matter EOS involves the combination of 
various theoretical models, computational techniques and astrophysi-
cal observations, all aimed at refining and validating our understanding 
through the comparison of theoretical predictions with observational 
data. The interactions between particles, such as neutrons, protons and 
electrons, are crucial factors that shape the EOS at different density 
regimes, as are the superfluid components. Furthermore, as densities 
increase towards the core of the star, the nature of matter within neu-
tron stars becomes more uncertain, with the possible appearance of 
exotic particles such as hyperons, meson condensates or quark matter4.

Neutron-star cooling is caused by a combination of neutrino emis-
sion from the dense core of the star and thermal photons emitted 
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To perform a systematic study of surface temperatures in iso-
lated neutron stars across different classes, we re-analysed deep 
XMM-Newton and/or Chandra data for a sample of 70 isolated neutron 
stars. Such a sample consists of sources with a statistically significant 
spectral contribution by a thermal component and with a reliable and 
sufficiently well-known age and distance (C.D. et al., manuscript in 
preparation). Out of this sample, three sources stood out for being 
colder by about an order of magnitude with respect to the other objects 
at similar young ages (Extended Data Tables 1–3). These sources are two 
rotation-powered pulsars (RPPs) PSR J0205+6449 (spin perio P = 70 ms, 
surface dipolar magnetic field Bp = 7 × 1012 G and age τr = 841 yr (ref. 19)) 
and PSR B2334+61 (P = 490 ms, Bp = 2 × 1013 G and τr = 7,700 yr (ref. 20)), 
and a central compact object (CCO), CXOU J0852−4617 (age = 2,500–
5,000 yr (ref. 21)). All three objects have an associated supernova rem-
nant studied at all wavelengths, providing precise distance and age 
constraints (in the case of PSR J0205+6449, also the historical record 
of its associated supernova, SN 1118; Methods). For each source, we 
estimated the effective blackbody temperature and the radius of the 
emitting surface through X-ray spectral analysis and used these values 
to calculate their thermal luminosity. We used simple blackbody mod-
els (Extended Data Fig. 1 and Extended Data Table 2), but checked that 
our final results held using more sophisticated atmosphere models 
(Extended Data Table 4) and considering the presence of an addi-
tional ‘hidden’ thermal contribution by the whole neutron-star surface 
(Methods and Extended Data Figs. 2 and 3). In Fig. 1, we report on the 
thermal luminosities of all the RPPs and CCOs with a precise estimate 
of the age and distance, the former not relying on the characteristic 

from the outer layers. By measuring the surface temperatures of many 
objects over a large age range, neutron-star cooling models (and con-
sequently, the EOS) can be constrained5. The cooling history of a neu-
tron star involves multiple parameters apart from the EOS, leading to 
diverse tracks for neutron stars born with different initial conditions, 
such as the object mass, the envelope composition and the initial 
magnetic field.

Cooling curves were historically divided into two theoretical 
classes: (1) the ’standard’ or ’minimal’ cooling ones, dominated by modi-
fied Urca processes possibly with the addition of superconductivity or 
superfluidity in the core producing neutrino cooling via Cooper pairs6; 
and (2) those showing ’enhanced cooling’ due to the activation of direct 
Urca processes, hyperons, or even quark matter or meson condensates7,8.

Evidences for the presence of enhanced cooling were presented for 
some isolated neutron stars5,9–12 and for transiently accreting neutron 
stars13–17. Both scenarios can provide independent constraints on the 
neutron-star cooling. However, on one side, the lack of well-constrained 
spectral energy distributions, exact ages and/or precise distances, 
and, on the other side, uncertainties on the accretion state and history 
precluded any firm and conclusive constraint on the EOS. Furthermore, 
it was suggested18 that the dissipation of the magnetic field in the 
highly resistive crust could hide the effect of the enhanced cooling 
mechanisms for stars with magnetic fields above 1014 G. In this Arti-
cle, we present a detailed study of three extremely cold, young and 
close-by neutron stars, the mere existence of which is constraining 
the neutron-star EOS because the ‘enhanced’ cooling processes are 
required to reconcile the models with the observational data.
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Fig. 1 | Comparison between observational data and theoretical cooling 
curves. The surface thermal luminosity (Lth) is plotted as a function of the real age 
(τr) for data and models. Observations include RRPs (squares) and CCOs (circles), 
with the three sources studied in this work in black. The 81 cooling curves used 
in our analysis are coloured based on their EOS: SLy4, orange; BSK24, purple; 
GM1A, blue. The line styles denote the masses: 1.4 M⊙, dots; 1.6 M⊙, dashed lines; 

1.8 M⊙, solid lines. The colour bars show the dipolar magnetic field values which 
were in the range of Bp = 1 × 1012–70 × 1012 G. Only for comparison, we also show 
three grey curves corresponding to stronger magnetic-field intensities of 1014 G, 
3 × 1014 G and 1015 G, not used in our statistical analysis. Errors in the luminosities 
are calculated as described in Methods.
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age of the pulsar inferred from the timing analysis (which is known to 
have large uncertainties). Being so young, that is, with ages between 
800 yr and 8,000 yr, and yet so cold, PSR J0205+6449, PSR B2334+61 
and CXOU J0852−4617 must have necessarily experienced some sort 
of rapid cooling.

To comprehend why the thermal X-ray luminosity appears signifi-
cantly faint during the early stages of these three objects, we conducted 
magneto-thermal simulations22–24 exploring different EOSs, masses 
and a range of magnetic fields. In particular, our collection of 81 simu-
lations comprises three distinct EOSs with various cooling channels, 
including modified Urca, Cooper pairs and direct Urca (among other 
channels; see, for example, ref. 11). In particular, SLy425 assumes a 
standard ‘minimal’ cooling scenario and does not activate ‘enhanced 
cooling’ processes, whereas BSK2426 and GM1A27–29, for certain masses, 
do involve ‘enhanced cooling’ processes such as nucleon direct Urca 
and hyperons direct Urca (the latter activated only for the GM1A).

In addition, we considered 3 different masses (1.4 M⊙, 1.6 M⊙ and 
1.8 M⊙), along with 9 initial magnetic-field values for the surface dipolar 
field ranging from 1 × 1012 G to 7 × 1013 G at the pole, with no toroidal 
magnetic field to avoid Joule heating and focus on the cold neutron-star 
scenario. Furthermore, we solely employed an iron-envelope model, as 
alternative compositions containing light elements would predict at 
these ages a thermal luminosity approximately one order of magnitude 
brighter than that projected by the iron-envelope model30 (Methods 
and Extended Data Fig. 4).

In Fig. 1, we show the observational measurements compared with 
the magneto-thermal evolutionary tracks. Even at first glance, it is clear 
that some of the explored scenarios are not matching the faint thermal 
luminosities of these extremely cold sources. Indeed, assuming a SLy4 
EOS, the dramatic drop in surface temperature in the three outliers 
could not be reached for any combination of mass and magnetic fields. 
In the exotic case of having hyperons in the core, namely, the case of 
GM1A, the cooling might proceed fast enough to be compatible with 
the observational data. However, for the BSK24 EOS, when the mass is 
larger than 1.6 M⊙ direct Urca is activated and the tracks show an 
enhanced cooling compatible with the data. Following a less qualitative 

and more rigorous approach, we used machine learning (Methods) to 
find the range of parameters that better described each source. At that 
aim, we first considered the observational data and the simulations in 
a three-dimensional (3D) space considering as independent parameters 
the thermal luminosity Lth, spin period P and spin derivative ̇P. We then 
also extended these simulations into a four-dimensional (4D) space, 
including also the age of the sources. As for the CCO CXOU J0852−4617, 
P and ̇P  are unknown, this analysis was carried out for only the two RPPs. 
The extension to a 4D space allowed us to check whether curves that 
may explain the observed Lth would also predict P and/or ̇P  compatible 
with the timing parameters of the sources at the same age.

In Fig. 2, we summarize the results of our machine learning simula-
tions in 4D (the results of the 3D are very similar; Methods, Extended 
Data Table 5 and Extended Data Fig. 5). According to these methods, 
we can quantitatively exclude the EOS without a physical mechanism 
to activate an enhanced cooling at young age (in our set of EOSs, this 
would correspond to SLy4).

In particular, for PSR B2334+61 all cooling curves point towards the 
source having a relatively high mass (~1.6 M⊙) and a dipolar magnetic 
field at birth of ~0.7 × 1013–3 × 1013 G, compatible with its current value. 
Despite a slight preference is visible for the hyperon EOS (GM1A) for this 
pulsar, we caveat that more simulations with other enhanced-cooling 
EOSs might also reach similar probabilities; hence, at this stage, we 
cannot constrain the exact EOS with this technique. Applying these 
methods to PSR J0205+6449, we find that both enhanced-cooling 
EOSs, BSK24 and GM1A, with masses of ~1.6 M⊙ are compatible with 
its observed parameters, resulting in an initial magnetic field within 
~3 × 1012–20 × 1012 G, again in agreement with the estimated value for 
this pulsar. For both sources, the simulations with the SLy4 EOS con-
sidering only ‘minimal’ cooling for any set of parameters provide a 
non-acceptable match with the data (probabilities <5%; Methods). 
Furthermore, considering only the source thermal luminosity and age, 
this conclusion holds also for CXOU J0852−4617.

Given the uniqueness of the EOS, these results provide evidence 
that neutron stars cannot be governed by an EOS that is not compat-
ible with the low luminosities of PSR J0205+6449, PSR B2334+61 and 
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Fig. 2 | Pie chart of our 4D classification method. We report the results of the 
classification method for PSR B2334+61 (a) and PSR J0205+6449 (b). Each chart 
is divided in three sectors for each of the EOS used: BSK24, purple; SLy4, orange; 

GM1A, blue. Each sector is further broken down by mass and magnetic field. 
Superimposed to the cloves, grey histograms denote the posterior probability 
for each simulation clove to be the cooling curve followed by the source.
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CXOU J0852−4617, at least in a certain mass range. The precise error 
determinations, the updated values for the distances and/or the ages 
of these three sources, along with the machine learning approach 
used to corroborate our conclusions, make these results the strong-
est measurement up to now in favour of enhanced cooling. We found 
that only EOSs (and compositions) allowing a fast cooling process in 
the first few thousand years can be successfully reconciled with the 
thermal emission of all sources in our sample. Although a detailed 
and comprehensive analysis of various possibilities for fast cooling 
(for example, hyperons, quarks, pure nucleonic matter with very large 
symmetry energy) is beyond the scope of this paper, the issue itself 
stimulates thought. In particular, considering a simplified nucleonic 
meta-modelling31, the proposed EOS that does not have a high enough 
proton fraction to activate fast cooling processes for any reasonable 
neutron-star mass is estimated to be about 75%. This modelling, despite 
being simplified and dependent on the assumed composition, shows 
that a significant fraction of the currently available EOSs are potentially 
excluded by the mere existence of these cold and young neutron stars.

Methods
Source sample
In this work, we present the analysis of deep X-ray observations of three 
neutron stars, PSR J0205+6449, PSR B2334+61 and CXOU J0852−4617, 
as part of a larger work done on the re-analysis of a total of 70 isolated 
thermally emitting neutron stars (C.D. et al., manuscript in prepara-
tion). The former two sources are young radio pulsars, the emissions of 
which are directly powered by their rotational energy, so that they are 
classified as RPPs. CXOU J0852−4617 is instead a non-pulsating neutron 
star classified as a CCO, a class of isolated neutron stars localized in the 
the geometrical centre of their supernova remnant (SNR). A summary 
of their timing parameters, the available X-ray observations and all 
relevant references are presented in the Extended Data Tables 1 and 3.

All neutron stars in our sample are associated with an SNR. 
PSR J0205+6449 is associated with the pulsar wind nebula 3C 58 and 
with the SNR G130.7+3.1, and it is emitting from radio to gamma-rays32,33. 
The other pulsar in the sample, PSR B2334+61, is also associated with 
an SNR, that is, with SNR G114.3+0.334, and it is detected in radio and 
X-rays. The CCO CXOU J0852−4617 is the X-ray bright point-source lying 
only ~35 arcsec away35 from the geometrical centre of the shell-type 
SNR G266.2−1.2, also known as Vela Jr36. As for many other CCOs, it 
does not have detected pulsations, but its faint optical magnitude 
limits, lack of variability and X-ray spectral properties confirm its 
neutron-star nature37. Interestingly, CXOU J0852−4617 is one of the 
very few CCOs that might have been observed in a different waveband 
than the X-ray. A candidate faint point-like infrared counterpart for 
the source has been found with European Southern Observatory Very 
Large Telescope (ESO-VLT) observations35,38 and interpreted as emis-
sion from the neutron-star magnetosphere or from a relic disk around 
the CCO. None of the three sources showed any variability in our data 
(nor in the past), as it is indeed expected for an isolated neutron star 
with a relatively low magnetic field.

Distances and real-age constraints
The location on the luminosity–age plane (Fig. 1) is critically depend-
ent on the accuracy with which we know both the distance and the 
age of our sources. In the three sources we report here, the SNRs and 
H i regions around the objects were studied in great detail, providing 
robust measurements of distances and ages.

PSR J0205+6449 is considered one of the youngest pulsars known. 
The source has been proposed to be the leftover of the historical super-
nova SN 1181, providing an age of 839 yr. However, several elements, 
such as the measured expansion speeds of both the synchrotron bubble 
and of the thermal filaments39, initially suggested that PSR J0205+6449 
(and 3C 58) may be instead older by thousands of years than SN 1181. 
Note that even in the unlikely case that PSR J0205+6449 is older than 

SN 1181, an upper limit on its age can be posed using its characteristic 
age τc of 54 kyr. Even assuming this upper limit, the SLy4 curves cannot 
explain its luminosity. Its distance was originally estimated to be 3.2 kpc 
(ref. 40). More recent H i measurements have instead placed the source 
at a closer distance of just 2 kpc (refs. 19,41). This is in-line with the asso-
ciation with SN 1181 and compatible with the source proper motion42. 
It is noteworthy, however, that the results of this paper would hold 
even assuming the outdated distance of 3.2 kpc, as the corresponding 
increase in luminosity would still place PSR J0205+6449 at a value of 
≲1033 erg s−1, that is, lower than the cooling curves simulated with SLy4.

For PSR B2334+61 instead, a distance range of 2.1–3.3 kpc was 
reported by several authors43,44 according to its radio dispersion meas-
ure. In the following we adopt those values. It is noteworthy that this 
result has been recently challenged by observations of the H i line in 
the SNR G114.3+0.3, according to which the source (and its SNR) is 
placed at a much closer location, that is at 700 pc (ref. 20). In addition, 
a 0.1–0.9 kpc range was reported by ref. 41 on the basis of kinematic 
analysis. Note that if this distance is assumed the pulsar would be even 
colder, hence our conclusions will not change. A value of 7.7 kyr was esti-
mated for the real age of the source from the study of the SNR20 (while its 
characteristic age is τc is 40 kyr). The real age of PSR B2334+61 has been 
reported without any uncertainty. We therefore adopted a 10% relative 
error on this value throughout this paper. For consistency, we also used 
a 10% uncertainty for the age of PSR J0205+6449, which is lacking of 
uncertainties as well as it coincides with the historical date of SN 1181.

Finally, CXOU J0852−4617 is associated with the SNR Vela Jr (for a 
critical discussion on the topic, see ref. 37). Several arguments, includ-
ing its expansion rate, the estimated shock speed and its association 
with the Vela Molecular Ridge (see, for a review, ref. 21), suggest that 
the CXOU J0852−4617 distance lies in the 0.5–1.0 kpc range, and its real 
age would lie in the range 2.5–5.0 kyr (ref. 21).

Data reduction
In this work, we considered only XMM-Newton and Chandra obser-
vations37,44,45, being those providing the most accurate X-ray spec-
tral energy distributions. Details on all observations can be found in 
Extended Data Table 3.

PSR J0205+6449 and its nebula 3C 58 have been observed 
three times by Chandra between 2001 and 200345. PSR B2334+61 
has been observed only once by XMM-Newton44. However, many 
archival XMM-Newton and Chandra observations are available for 
CXOU J0852−461737. For the latter, we analysed only the Chandra obser-
vation with the longest exposure time, and for which the Advanced 
CCD Imaging Spectrometer ACIS-S has been employed. We used only 
the Chandra data to excise more effectively any contribution from the 
underlying SNR.

In the following subsections, we describe the data reduction pro-
cedure followed for all the datasets used in this work.

XMM-Newton
We include data from the EPIC-pn detector46 onboard XMM-Newton. 
For all the observations, the EPIC-pn was set in small-window mode 
(time resolution of 5.7 ms). Data reprocessing was performed with the 
XMM-Newton Science Analysis Software (SAS) v. 20.0.0. To reduce the 
data, we first filtered the event files for periods of high background 
activity. We used the EPATPLOT tool to display the observed pattern dis-
tribution versus the expected one and thereby assess the pile-up impact, 
finding that it was negligible for all the observations considered here. The 
source counts were extracted from a circle of 20 arcsec radius centred 
on the coordinates of the source. For the background, we used a region 
of the same size and shape, located sufficiently far from the source.

Chandra
All three Chandra observations of PSR J0205+6449 and the single 
observation of CXOU J0852−4617 used here were carried out using 
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the ACIS-S. Data processing, reduction and spectral extraction of all 
observations was performed within CIAO v.4.14 using the standard 
pipelines. A 3 × 3 pixel square box was used to identify source photons, 
small enough to limit contamination from the surrounding nebula, fol-
lowing standard approaches45. A region of the same size, but located far 
from the source and 3C 58 was used for the background. The routine 
SPECEXTRACT task was used to build the spectra and create the ancil-
lary response and the redistribution matrix files.

Spectral analysis
The spectral analysis was performed using XSPEC v.12.12.1. For 
PSR J0205+6449 and CXOU J0852−4617, the spectra were grouped 
in order to have at least 20 counts per bin, enabling use of the χ2 sta-
tistics. The low count-rate of the PSR B2334+61 observation forced 
us to choose a different grouping strategy, 10 counts per bin, and 
consider the C statistics instead. We kept data only within an energy 
interval where the source data points were higher than the background 
level, thereby selecting 0.3–10 keV, 0.5–2 keV and 0.5–4.5 keV for 
PSR J0205+6449, PSR B2334+61 and CXOU J0852−4617, respectively. 
In all the models used to describe the data, we included the TBABS 
component to take into account the effect of the interstellar absorp-
tion, setting the photoelectric cross-sections to the values provided 
by ref. 47. For the elemental abundances, we tried the tables by both 
refs. 48,49, finding negligible differences.

While the spectral shapes of PSR B2334+61 and CXOU J0852−4617 
were relatively simple, being consistent with a single, thermal compo-
nent, the spectrum of PSR J0205+6449 is apparently dominated by a 
power-law component. Details on the results of the fits are reported in 
Extended Data Table 2, and we refer to Extended Data Fig. 1 for a plot 
with spectra, best-fit models and corresponding residuals.

For PSR J0205+6449, we initially used a simple POWERLAW model 
to describe the three available Chandra spectra, finding an already 
acceptable fit (χ2/d.f. = 587/600). We then added a blackbody compo-
nent, described with the BBODYRAD model in XSPEC. The parameters 
of BBODYRAD are the blackbody temperature kTbb and its normaliza-
tion Kbb, which translates into the blackbody radius Rbb by means of 
the formula Kbb = (Rbb/D10kpc)2, with D10kpc the distance of the source 
in units of 10 kpc. Adding a blackbody component, results in a slight 
improvement in the fit, which turns out to be highly significant when 
we use the ref. 49 abundances for the hydrogen column density, NH, 
whereas only marginally significant with the ref. 48 abundances, with 
probability of improvement by chance of ~10−7 and ~10−3, estimated 
using FTEST. Such a result indicates the clear presence of correlation 
between NH and the blackbody parameters. To further investigate 
the significance of the thermal component in the fit with the ref. 48 
abundances, we applied the Goodman–Weare algorithm of Markov 
chain Monte Carlo50 to produce contour plots for NH, the surface 
temperature kTbb and the blackbody radius Rbb. We used 20 walkers 
and a chain length of 5 × 105, to calculate the marginal posterior dis-
tributions of the best-fit parameters for all three Chandra spectra. 
The results are presented in the corner plot in Supplementary Fig. 1. 
As evident, both kTbb and Kbb can be sufficiently constrained and the 
normalization is small, but still not consistent with zero. Such a result 
confirms the presence of a thermal component in the emission of 
PSR J0205+6449, in agreement with the results from previous studies 
of the source where the thermal emission was indeed significantly 
detected45.

To describe the emission by PSR B2334+61, we tried both a 
BBODYRAD model or a single POWERLAW. Despite providing a statis-
tically acceptable fit, the latter model requires a very soft power-law 
component, with Γ > 6, which is unphysical and suggests that the 
power-law component is actually mimicking a blackbody-like spec-
trum. We therefore use a simple BBODYRAD model (similar to ref. 44),  
which is also sufficient to describe the spectrum of this source, 
CXOU J0852−4617, as also reported by other authors37. The best-fit 

models and relative residuals for these sources are shown in Extended 
Data Table 2 and Extended Data Fig. 1. According to these fits, the 
thermal emissions from PSR J0205+6449 and PSR B2334+61 are both 
consistent with blackbody temperatures of 0.15–0.25 keV (with the for-
mer slightly hotter) arising from hotspots of size 1–2 km. Interestingly, 
CXOU J0852−4617 is instead characterized by a significantly hotter 
blackbody temperature, that is, around 0.4 keV, and smaller size, about 
0.2–0.3 km. The results of the fits are consistent, within the errors, with 
studies using the same datasets and absorbed blackbody models37,44,45.

Once the best-fit models were found, we applied the convolution 
model CFLUX to the BBODYRAD component to estimate the bolometric 
flux that can be considered purely thermal. These results are reported 
in Extended Data Table 2.

We then used the source distances to estimate their thermal 
luminosity following standard propagation errors techniques. In 
the following, we refer to this as observed luminosity Lobs. However, 
for our statistical analysis, we estimated the error distribution for 
PSR J0205+6449 and PSR B2334+61 using a more rigorous approach 
that involves Monte Carlo uncertainty propagation (see below). The 
luminosity obtained with this technique, Lstat from now on, is always 
well compatible within the errors with Lobs. Both values are reported 
in Supplementary Table 1.

Testing atmosphere models
In this work, we have used systematically a simple blackbody model 
to describe the thermal emission from these sources. Despite its 
success in describing the spectra from several isolated neutron stars 
and its simplicity, this approach ignores some crucial details on the 
underlying physics of neutron-star emission: the possible presence 
of an atmosphere that modifies the blackbody emission coming from 
the neutron-star surface through Compton scattering and other 
radiative processes. Several studies have shown that when the thermal 
component is modelled using a proper model for the neutron-star 
atmosphere instead of a blackbody model, as in the case of Cassio-
peia A9,51, a different set of parameters could be obtained, although at 
the expense of assuming certain densities and compositions, which 
are typically unknown. To check whether our results would change 
when adopting atmosphere models, we have fitted our three sources 
with NSMAXG9, which is suited to probe different chemical composi-
tions (H, C, O) and different magnetic-field intensities. We first tried 
to fix the normalization Nnsmaxg, which is connected to the radius of 
the emitting region with the formula Nnsmaxg = (Rem/RNS)2, to 1, cor-
responding to the case where the whole surface emits (where Rem is 
the emitting radius and RNS is the neutron star radius). However, the 
resulting fits were unacceptable, so we left Nnsmaxg free to vary, finding 
always values lower than 1. We also fixed the distances to the values 
reported in Extended Data Table 1. For all sources, we explored the 
case of B = 1012 G and tried as chemical compositions H, C and O. For 
the two RPPs, we found that all the probed chemical compositions 
could lead to equally acceptable fits with respect to the simple black-
body models. For CXOU J0852−4617, however, only the model with H 
was compatible with the data. Finally, once the best-fit parameters 
were obtained, we used again CFLUX to estimate the bolometric 
flux. We report the final parameters in Extended Data Table 4. From 
a comparison between the results with a simple blackbody model 
(Extended Data Table 2), we find that indeed adopting more physi-
cally motivated models of the neutron-star surface emission leads to 
different best-fit values for the effective temperatures and the sizes of 
the emitting regions. Nevertheless, using an atmosphere model leads 
in all cases to bolometric fluxes that are systematically smaller or at 
least compatible within the errors with respect to the fluxes estimated 
through a simple blackbody model. These tests show that the low 
thermal luminosities reported in this paper might even represent an 
overestimate of the actual thermal luminosity from these sources, 
solidifying our conclusions.
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Adding the hidden contribution from the whole neutron-star 
surface
The thermal components detected in all these sources are character-
ized by blackbody radii of a few kilometres or less and can be therefore 
considered as being radiated by hotspots on the neutron-star surface. 
However, a contribution from the entire neutron-star surface at lower 
temperature, that is, in an energy range where interstellar absorp-
tion is stronger, can not be excluded a priori. We therefore tried to 
estimate the upper limit of this hidden contribution by adding to our 
final fits an additional blackbody component with radius fixed to the 
neutron-star assumed radius (in our case, a value of 11 km (ref. 52) was 
chosen). The temperature of this blackbody component was used 
to estimate an upper limit on the thermal luminosity from the entire 
surface, Lsurf hereafter.

We show both the best fit and the upper limit of a possible unde-
tected surface blackbody thermal component in Extended Data Fig. 2, 
showing how even if actually present, the latter emission is always made 
undetectable by interstellar extinction. For all sources, these upper 
limits, reported in Supplementary Table 1, are still too low to reconcile 
these sources with the cooling tracks simulated with the SLy4 EOS, as 
shown in Extended Data Fig. 3. In the same figure, we also show the 
upper limits considering the maximum flux across all models (the three 
atmosphere models and the adopted blackbody model).

Magneto-thermal simulations
Our astrophysical scenario of interest is the long-term evolution of 
magnetic fields in neutron stars. In the crust of a neutron star, the evolu-
tion of the system is governed by two coupled evolution equations: the 
induction equation and the heat diffusion equation (see the review by 
ref. 53 for more details), given by:

∂B
∂t

= −∇ × [η(T)∇ × (eνB) + c
4πene

[∇ × (eνB)] × B] , (1)

cV(T)
∂(Teν)
∂t

= ∇ ⋅ (eνκ̂(T,B) ⋅ ∇(eνT))+

+e2ν(QJ(B,T) −Qν(B,T)),
(2)

where B is the magnetic field vector, T the surface temperature, t is the 
time, c is the speed of light, e is the elementary electric charge, ne is the 
electron number density, η(T) = c2/(4πσe(T)) is the magnetic diffusivity 
(inversely proportional to the electrical conductivity σe), cV is the heat 
capacity per unit volume, κ̂  is the anisotropic thermal conductivity 
tensor, Q J and Qν are the Joule heating rate and neutrino emissivity  
per unit volume, respectively, and eν is the relativistic redshift 
correction.

The interconnections between the magnetic and thermal evolu-
tion equations occur at the microphysical level. On the one hand, as 
the temperature decreases due to neutrino emission, the resistivity 
of the matter also decreases, leading to increased thermal and electric 
conductivities. At sufficiently low temperatures, these conductivities 
become temperature independent18, resulting in a gradual decrease 
in the ohmic dissipation rate. On the other hand, as the magnetic field 
evolves, it affects the thermal conductivity both along and across the 
magnetic-field lines, influencing the local temperature. This, in turn, 
causes significant variations in the surface temperature distribution 
Ts, which can be observed and constrained through measurements. 
Simultaneously, the Hall effect drives electric currents towards the 
crust/core boundary, where the presence of high impurities and pasta 
phases facilitates a more efficient dissipation of the magnetic field54. 
Consequently, the magnetic energy is converted into Joule heating 
Q J. While the Hall effect itself does not directly dissipate magnetic 
energy, it gives rise to small-scale magnetic structures where ohmic 
dissipation is enhanced. To a lesser extent, the magnetic field B also 
influences cV and Qν.

As the induction equation and the heat diffusion equation are 
coupled at a microphysical level, they must be supplemented by an 
EOS, which allows to build the background model of the neutron star 
solving the Tolman–Oppenheimer–Volkov equations using different 
models of a nuclear EOS at zero temperature (which we take from the 
online public database CompOSE https://compose.obspm.fr/). At the 
temperatures (T < 1010 K) and magnetic-field strengths (B < 1016 G) of 
interest, neutron stars consist of degenerate matter, typically charac-
terized by temperatures lower than the Fermi temperature throughout 
their entire existence. In this specific temperature range, quantum 
effects, as dictated by Fermi statistics, overwhelmingly dominate over 
thermal effects. Therefore, the EOS for neutron stars can be effectively 
approximated as that of zero temperature, allowing us to largely ignore 
thermal contributions for most of their lifespan. In particular, here we 
present results of EOSs at zero temperature, describing both the star 
crust and the liquid core. This allows us to interpolate the provided 
tables using different schemes to obtain the relevant quantities, 
selected by the user. The EOS provides the input to compute at each 
point of the star the microphysics parameters, for example, η(T), cV, κ̂  
and Qν, essential for our simulations. In particular, it is important to 
take into account superfluid and superconductive models for neutrons 
and protons, respectively, as they significantly impact the cooling 
timescales through their influence on cV and Qν. In addition, superfluid-
ity and superconductivity activate an additional neutrino emission 
channel through ‘Cooper pair breaking and formation’ processes. This 
channel is triggered owing to the continuous formation and breaking 
of Cooper pairs. The effect of the superfluidity and superconductivity, 
namely, the suppression of specific heats, the creation of an additional 
neutrino channel and the suppression of neutrino emissivity, collec-
tively influence the cooling process. While the suppression of neutrino 
emissivity slows down cooling, the other two effects accelerate it. 
Overall, unless extremely unusual choices are made for the gap models 
in the neutron star, cooling is typically accelerated. As the primary 
objective of this work is not to explore the vast parameter space encom-
passing superfluidity models, detailed discussions concerning their 
impact on cooling models and in particular on enhanced cooling are 
deferred to dedicated studies (for example, refs. 11,18,55–58). In this 
study, we utilize the superfluid gap proposed by ref. 59. Various addi-
tional microphysical ingredients play a crucial role in the interior of a 
neutron star. Notably, the EOS and superfluid models have a significant 
effect on the cooling process as already mentioned, but they play a 
comparatively smaller role in the evolution of the magnetic field, 
especially when compared with the initial topology chosen for the 
system.

For a comprehensive computation of the different microphysics 
ingredients (for example, neutrino emissivity, conductivities, magnetic 
diffusivity and so on) required for the heat diffusion equation and the 
induction equation in our simulations, we refer to the review by ref. 11 
and exploring the publicly available codes developed by Alexander 
Potekhin (http://www.ioffe.ru/astro/conduct/). These resources offer 
valuable insights and tools for studying the intricate physics governing 
neutron stars.

To solve the induction equation (equation (1)), we consider the 
magnetic field confined in the crust of a neutron star assuming perfect 
conductor boundary condition at the crust/core interface and potential 
magnetic boundary conditions (current-free magnetosphere) at the 
outer numerical boundary, placed at density ρ = 1010 g cm−3. Moreover, 
in this study, we focus solely on the axisymmetric evolution and do 
not consider the generalization to three dimensions, as performed in 
the recently developed MATINS code for coupled magneto-thermal 
evolution in isolated neutron stars60,61.

We limit our analysis to solving the heat diffusion equation (assum-
ing an initial temperature value of 1010 K) solely in the crust of the 
neutron star. This is owing to the fact that the core of a neutron star 
becomes isothermal a few decades after formation, due to its high 
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thermal conductivity. Meanwhile, the low-density region (envelope 
and atmosphere) quickly reaches radiative equilibrium, establishing a 
significant difference in thermal relaxation timescales compared with 
the interior (crust and core). This discrepancy makes it computation-
ally expensive to perform cooling simulations on a numerical grid 
encompassing all layers up to the star’s surface. Instead, for the outer 
layer, we rely on a separate calculation of stationary envelope models 
to derive a functional relationship between the surface temperature 
Ts (determining the radiation flux) and the temperature Tb at the crust/
envelope boundary. This Ts–Tb relation serves as the outer boundary 
condition for the heat transfer equation.

To account for surface radiation, we adopt a blackbody emis-
sion model. Given our focus on explaining the luminosity of faint and 
young objects, we specifically adopt the most updated iron envelope11. 
Light-element envelope models, in contrast, result in approximately 
one order of magnitude brighter luminosity. For a more comprehensive 
examination of how envelope models with different compositions 
influence the cooling process, we direct the reader to ref. 30.

In this study, we use the latest version of the two-dimensional 
magneto-thermal code24 to model nuclear matter. In addition, to model 
hyperon matter in the core of the star, we use the code in refs. 28,29, 
which is also based on ref. 24, but has been appropriately modified 
to calculate the magneto-thermal evolution in stars containing both 
nuclear and hyperon matter. This code smoothly matches the GM1A 
and GM1B EOSs27 in the core with the SLy4 EOS25 in the crust while 
also considering the influence of hyperon matter on the star’s micro-
physics. One crucial modification made in refs. 28,29, compared with  
ref. 24, is the superfluid gap model, which allows accurate descrip-
tions of stars containing hyperons. Furthermore, the most significant 
effect of this study arises from the inclusion of the hyperon direct Urca 
channel and the Cooper pair of hyperons. These two neutrino cooling 
channels, especially the hyperon direct Urca one, lead to enhanced 
cooling in neutron stars at a young age.

Our simulations encompass various neutron-star background 
models, considering different masses M = 1.4 M⊙, 1.6 M⊙ and 1.8 M⊙, 
along with diverse nuclear EOSs. We selected three EOSs for our 
investigation: BSK2426, SLy4 EoS25 and GM1A EoS27 matched with the 
SLy4 EOS in the crust28,29. Through magneto-thermal simulations, we 
observed distinctive cooling behaviours. Specifically, the SLy4 EOS25 
showed no activation of enhanced cooling. Conversely, the BSK24 
EOS26 showed enhanced cooling, triggered at a direct Urca threshold 
density of 8.25 × 1014 g cm−3. It is noteworthy that the latter EOS attains 
a maximum mass of 2.279 M⊙ and a corresponding central density of 
2.26 × 1015 g cm−3. In the case of the GM1A EOS27, our analysis revealed 
consistent activation of enhanced cooling across all examined masses, 
starting from a mass of 1.4 M⊙ and a density of 5.949 × 1014 g cm−3. This 
particular EOS reaches a maximum mass of 1.994 M⊙ and a correspond-
ing central density of 2 × 1015 g cm−3.

Furthermore, we explore a wide range of initial magnetic-field 
values for the surface dipolar field, ranging from 1 × 1012 G to 7 × 1013 G 
at the pole. Our simulations are restricted to this range in accordance 
with our objective to analyse pulsars with magnetic fields ranging from 
1012 G to a few 1013 G, as confirmed by observational measurements. 
To maintain focus on the cold-neutron-star scenario, we intentionally 
excluded the inclusion of a toroidal field in our simulations. This deci-
sion was made to prevent Joule heating and to avoid scenarios where 
the dissipation of the magnetic field in the highly resistive crust might 
obscure the effects of enhanced cooling mechanisms in stars with 
magnetic fields exceeding 1014 G (ref. 18). In Supplementary Fig. 2, we 
show the same simulations as for Fig. 1 but showing the period and 
period derivative evolution.

On the effect of choosing different envelopes
In this section, we explain the reasoning behind some of the assump-
tions and/or simplifications we make in this study, in particular 

concerning the neutron-star envelope, and the ages and distances we 
use for the three cold neutron stars we present.

Neutron-star envelopes might be composed by a variety of ele-
ments, from the lightest ones such as hydrogen or helium, to heavy 
envelopes such as iron. The envelope composition might differ from 
source to source depending on its exact evolutionary history, and they 
are known to show different cooling evolution30. Cooling simulations 
by many authors show how heavy envelopes systematically result in 
cooler temperatures at younger ages. We have chosen to use here only 
the simulations using the heavy envelope as we aimed at the modelling 
of very faint sources; hence, we assumed the most extreme case. If these 
objects would possess a light envelope, the need of enhanced cooling 
would be even more pronounced.

However, although initially considering also the pulsar 
PSR B0656+14 among the extremely cold sources, while performing 
simulations using also light envelopes30, we saw that at such older ages 
(>104 yr), the cooling curves might behave differently (Extended Data 
Fig. 4). In particular, using light envelopes, even EOSs not activating 
enhanced-cooling processes might explain this object.

In Extended Data Fig. 4, we also show simulations for a 2 M⊙ source, 
showing how even for this extreme mass the SLy4 does not activate any 
enhanced-cooling mechanism.

Statistical analysis
To constrain the nature of each source, we start comparing their 
observed parameters, Lth, P and ̇P, against the tracks of the 81 simula-
tions in the same 3D parameter space (Extended Data Fig. 5), each 
containing 128 points corresponding to various times from the forma-
tion of the neutron star up to ~100 kyr age (0, 1.3, 1.5, 1.8, …, 81,200, 
97,400 yr). Ideally, the most probable parameters (EOS, mass and Bp) 
of a given source are those of the simulated neutron star sharing the 
same observed features. However, owing to the finiteness of the simula-
tions, and the uncertainty on the luminosity (we ignore the uncertain-
ties on P and ̇P  as the relative uncertainty on Lth is significantly higher), 
there is no simulation passing exactly through the positions of the 
sources in the feature space. In addition, multiple simulations may be 
found in the vicinity of the sources (Extended Data Fig. 5). Conse-
quently, we opt for a machine learning model that given the observa-
tional and simulation data, can identify the most probable simulations, 
and as a consequence, the posterior distribution of the parameters, 
namely, the EOS, mass and Bp. We tried with two approaches, deep 
learning and classification, explained in detail in the next sections.

The deep learning approach
The simulation parameters are either categorical (EOS) or continuous 
(mass and Bp). If the categorical and continuous parameters could be 
constrained by mutually exclusive sets of features (for example, if the 
EOS could be constrained only by Lth, while mass and Bp only by P and ̇P),  
then their estimation could rely on independent classification and 
regression models on the independent sets of inputs and outputs. 
However, this is not the case in the simulations: we need to employ a 
machine learning approach that performs both classification and 
regression simultaneously. We used a neural network that learns the 
parameters (EOS, mass and Bp) given a specific point in the feature 
space (LX, P and ̇P), trained on the simulation data. Specifically, using 
TENSORFLOW62, we constructed a multilayer perceptron neural net-
work that predicts the parameters, with a loss function being the sum 
of the loss for the EOS, and the loss for the values of mass and Bp. The 
architecture is summarized as an input layer of size 3 (for the 3 features), 
fully connected hidden layers (with rectified linear unit activation 
functions) and 2 output layers connected to the last hidden layer:  
(1) the classification output layer of size 3 and softmax activation func-
tion (for the classification probabilities for BSK24, SLy4, SLy4 + GM1A), 
and the (2) regression output layer of size 2 and linear activation func-
tion (for the mass and Bp). We tried different numbers and sizes of 

http://www.nature.com/natureastronomy


Nature Astronomy

Article https://doi.org/10.1038/s41550-024-02291-y

hidden layers, loss functions (for example, mean squared error of the 
regression output, and cross entropy for the classification output). We 
found that the models were converging slowly (up to 10,000 epochs) 
with poor results: the best accuracy in predicting the EOS class was 
~65%, which is not significant with respect to a dummy classifier (33% 
accuracy if randomly assigning one of the three EOSs) and the classifi-
cation approach below (90% accuracy). Increasing the number of 
simulations would aid the neural network in learning the feature space; 
however, owing to their computational complexity, we employed the 
classification approach.

The classification approach
Interestingly, classification can be seen as ‘discretized’ regression: 
instead of estimating the mass of a neutron star, we can classify it 
into distinct mass classes, 1.4 M⊙, 1.6 M⊙ and 1.8 M⊙. However, training 
three classifiers for EOS, mass and Bp is not optimal as this ignores the 
interplay between the parameters in the evolution of neutron stars 
imprinted in the feature space. In our case, each simulation corre-
sponds to a combination of EOS, mass and Bp classes, and, therefore, 
there is only one class: the simulation class, which can be modelled as 
the ID of the simulation (that is, k corresponding to the kth simulation). 
This is a simple classification task that can be easily carried out with 
standard, well-understood machine learning classifiers that are easily 
trained on small datasets. Using a probabilistic classification algorithm 
to predict the simulation class, we can predict the classification prob-
ability of each simulation for each observed source. Then, the posterior 
of each parameter to have a specific value is simply the sum of all the 
classification probabilities of the simulations sharing the same value. 
For example, the posterior of the EOS of a source being BSK24 is the 
sum of the classification probabilities of all the simulations (classes) 
for which the EOS is BSK24, predicted on the features of the source:

P(BSK24) =
n
∑
k=1

P(BSK24 = EOSk)πk (3)

where P(BSK24 = EOSk) is either 1 or 0, denoting whether the BSK24 
EOS was used in the kth simulation, πk is the prior on the class which 
in our case is the classification probability of the kth simulation when 
predicting the class of the observation, and n is the total number of 
simulations. The same approach is used for the continuous parameters 
as well (mass and Bp), with the output being still the marginal prob-
abilities at the distinct values used in the simulations.

We stress that one should be careful in the interpretation of the 
various classification metrics (for example, accuracy). The number of 
simulation classes depends on the choices for the range and resolution 
in the initial conditions, which are generally restricted due to technical 
and modelling difficulties (for example, computational cost, available 
EOS models and so on). Ideally, a large number of simulations could 
be run, leading to a paradox: due to the continuous nature of the mass 
and Bp, the classification probability would approach zero even if the 
‘correct’ model is present in the training. Consequently, the absolute 
scale of the accuracy of the trained classifier is not an estimate of the 
performance of the methodology. Conversely, the relative accuracy 
between different algorithms (or hyperparameters) measures their 
relative ability to learn the feature space given the simulation choices 
and the observational uncertainties.

Selection of classifier and hyperparameters
To select the classification algorithm, we design a cross-validation test 
bed. We consider eight different classifiers offered by the SCIKIT-LEARN 
package63: k-nearest neighbour, random forest, decision tree, logistic, 
support vector, nu-support vector, multilayer perceptron and Gauss-
ian process classifier, and multiple hyperparameter choices for each 
(three to ten different values for a key hyperparameter such as k for the 
k-nearest neighbour, or the kernel for the Gaussian process classifier).

We set aside one-sixth of the data as a test dataset that will be used 
to estimate the accuracy of the classifier with the best hyperparame-
ters. The remaining dataset is separated in five folds of equal fractions 
(one-sixth of the original data). A fivefold cross-validation approach 
is adopted to measure the accuracy of the different classifiers and 
hyperparameter choices. However, the test samples fall very close to 
the training samples as they follow distinct curves in the feature space. 
Consequently, most classifiers will show very high performance, which 
does not reflect the accuracy when applied in real data, which are 
subject to measurement uncertainties. For this reason, we ‘disturb’ the 
cross-validation samples by adding Gaussian noise in the decimal 
logarithm of the luminosity of the simulations (we ignore the uncertain-
ties on P and ̇P  as they are negligible), to simulate the presence of 
uncertainty. We train, cross-validate and test the classifiers at 6 differ-
ent scales for the uncertainty: 0 (no disturbance), 0.05, 0.10, 0.15, 0.2, 
0.25 and 0.30 dex, a range that includes the uncertainty on Lth in our 
sources (close to 0.2 dex).

For each classifier and Lth uncertainty level, we use the 
cross-validation technique to optimize for the hyperparameters. Then, 
using the test dataset, we measure the accuracy score, that is, the frac-
tion of test data points that the algorithm was able to match to their 
original track. Trying all classification algorithms initially, we found 
that the k-nearest-neighbour and random-forest classifiers showed 
the highest accuracy scores. In addition, they are computationally 
efficient during both training and prediction. For this reason, we focus 
on these two classification methods from now on. In the top left panel 
of Supplementary Fig. 3, with solid lines, we show the accuracy of the 
k-nearest-neighbour and the random-forest classifiers, as a function 
of the Lth uncertainty level. Both algorithms perform equally well. For 
the prediction of the properties of the observed source, we select the 
random-forest classifier because it performs better at high uncer-
tainties (≳0.2 dex). In addition, the random-forest classifier has two 
attractive properties: it is not sensitive to the scale of the features and 
it is intrinsically a probabilistic algorithm.

Finally, as we are interested in the ability to predict the physical 
properties of the pulsars, we measure the marginal accuracy of the clas-
sifiers, that is, the ability to predict them independently. For example, 
if a test data point corresponds to a model with M = 1.4 M⊙, does the 
predicted model have the same mass (no matter what the EOS or Bp)? 
In the top right, bottom left and bottom right panels of Supplementary 
Fig. 3, we show the marginalized accuracy for the EOS, mass and Bp, 
respectively (with solid lines). We find that the magnetic field is easier 
to be learned (>95% accuracy), while the EOS and mass are sometimes 
mismatched (43–95% accuracy), especially at high uncertainty levels. 
The fact that the accuracy score is not 100% even with no added noise 
in the luminosity reflects the degeneracy between the models: as can 
be seen in Extended Data Fig. 5, the tracks of the different simulations 
often occupy the same regions of the feature space. Here we remind 
that the accuracy score should be used only for comparisons of algo-
rithms, and not as a measure of performance of the methodology.

Predictions accounting for the uncertainty on the luminosity
We use the random-forest classifier that has been optimized for the 
level of Lth uncertainty in our observations, retrained using all the 
available simulation data (without separation to training, validation 
and test datasets64). However, the uncertainty of the luminosity is not 
used directly during prediction. To take into account the observa-
tional uncertainty of a given source’s luminosity, we use a Monte Carlo 
approach: we sample the error distribution of the luminosity 100,000 
times, predict the properties of the sources and sum the results. To 
sample the error distribution of the luminosity, we use Monte Carlo 
uncertainty propagation: we model the error distributions of the flux 
and the distance, draw samples from them and calculate the luminos-
ity samples. This is to avoid standard uncertainty propagation for 
three reasons: (1) we have high relative uncertainties in the quantities 
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involved; (2) the flux and distance confidence intervals are not sym-
metric (especially in the case of the distance of PSR B2334+61); (3) the 
classifier operates in log-space where even symmetric error bars are 
transformed into asymmetric ones. We note that applying the stand-
ard uncertainty propagation formula by averaging the low and high  
error bars resulted in ~20% differences in the resulting classification 
probabilities with respect to the Monte Carlo uncertainty propagation 
using asymmetric error distributions as outlined below.

First, we represent the flux and distance uncertainties using the 
binormal distribution, which is flexible enough to represent asym-
metric distributions. A binormal distribution’s probability density 
function is the result of stitching together the opposite halves of two 
distinct normal distributions with the same mean value (which acts as 
the mode of the new distribution) but different standard deviations65. 
Consequently, we represent each flux and distance measurement with 
a binormal distribution by adopting the measured value as the mode, 
and fitting for the two standard deviations such that the reported con-
fidence intervals are matching those of the binormal distribution. In 
Supplementary Fig. 4, we show the probability density functions of the 
constructed binormal distributions (in the form of histograms of their 
samples) for the flux and distance (left and middle panels, respectively) 
of the two sources for which we apply the classification, as well as the 
derived luminosity error distribution.

We predict the probability of the 81 simulations, 100,000 times 
(for each sample from the Lth distribution) for each source. By summing 
up the 100,000 results, we find the classification probability for each 
model. In the top panel of Supplementary Table 2, we show the models 
with the highest classification probabilities, and in Fig. 2 we visualize 
all the results. In addition, in Supplementary Table 2, we report the 
marginalized probability for the EOS, mass and Bp of each source, which 
are also shown in Supplementary Fig. 5.

Accounting for the age information
As the simulations track the evolution of the properties of the pulsars 
in time, if the real age of the source is known, it provides an additional 
constraint. We add the time as another input variable, making the fea-
ture space 4D, and then repeat the above analysis: (1) optimize the two 
classification algorithms for different luminosity uncertainty scales 
(see dotted lines in Supplementary Fig. 3); (2) select the random-forest 
classifier optimized for the 0.2 dex uncertainty scale (it outperforms 
the k-nearest-neighbour classifier at uncertainty scales >0.1 dex); (3) 
predict the parameters of the two sources using the age estimates in 
Extended Data Table 1.

Having a 4D feature space, it is impossible to visually inspect 
its coverage by the simulation tracks. Instead, we ensured that the 
observed sources fall within the range of the simulation evolutionary 
tracks by confirming that their positions are inside a simplex of the 
Delaunay hypertetrahedralization of the simulation data.

The predictions of the 4D classifier are shown in Extended Data 
Table 5 and Supplementary Fig. 5 (with red rectangles). These results 
are for the most part consistent with the 3D classifier. For both sources, 
the 3D and 4D classifiers indicate the same most probable value for Bp. 
For PSR J0205+6449, the most probable values for the EOS and mass are 
the same, while for PSR J0205+6449 they differ, but not significantly 
(BSK24 and GM1A EOS, and 1.6 M⊙ and 1.8 M⊙ masses have high marginal 
posteriors >25%).

We notice that the posteriors in the 4D case are less ‘peaky’. This is 
in contrast to our expectation that adding another feature (age) would 
create larger contrast between the marginal probabilities (effectively 
lowering the entropy of information). Given the small number of EOSs 
in our simulations, at this stage, we do not consider our method well 
suited to constrain the EOS itself. Nevertheless, for both sources, our 
statistical analysis does show that the SLy4 EoS and the 1.4 M⊙ mass 
scenario are found to be highly improbable with or without consider-
ing the age information.

Data availability
The data that support this paper are publicly available in the 
XMM-Newton and Chandra archives. Further data products can be 
supplied by the corresponding authors on request.

Code availability
The codes that support this paper are available upon request to the 
corresponding authors.
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Extended Data Fig. 1 | Energy Spectra. Best-fit model and residuals for the 
three sources used in this manuscript, that is, (a): PSR J0205+6449 (using three 
different observations labelled with the relative ID; see Extended Data Table 3), 

(b): PSR B2334+61, (c): CXOU J0852-4617. Different line styles were adopted to 
distinguish between the different components, that is dotted for POWERLAW 
and dashed for BBODYRAD.
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Extended Data Fig. 2 | Thermal luminosity components. Comparison between 
best-fit models of the thermal emission in the three sources used in this work and 
the cold, undetected blackbody components which may possibly be emitted by 
the whole NS surface but hidden out by interstellar absorption (see Extended 

Data Table 2 for the exact values and errors). The absorbed components are 
displayed with bolder lines and colors to distinguish them from the unabsorbed 
components.
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Extended Data Fig. 3 | Comparison between luminosities. We plot here all the 
luminosities obtained in this work (see Supplementary Table 1) and theoretical 
cooling curves simulated adopting SLy4 as EoS. The curves are stylised following 
the same prescriptions as in Fig. 1. For each of the three sources we show Lobs (Lstat) 
with black (green) error bars. Upper limits on the luminosity of each sources, 

calculated as Lobs + ΔLobs + Lcool (with ΔLobs the 1-σ error on Lobs), are displayed with 
purple vertical arrows. An alternative version of the upper limits, using the highest 
flux from all models (three atmosphere models and the adopted blackbody model 
are shown with red vertical arrows; see Extended Data Tables 3–4 for the exact 
values and error determinations).
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Extended Data Fig. 4 | Comparison between cooling tracks with different 
envelopes. We produced cooling curves using heavy (solid lines) and light 
(dashed lines) envelopes. The curves in the top (bottom) panels were produced 
using BSK24 (SLy4) and are coloured with purple (orange). Different shades of 

the same colours are used to identify different values of the magnetic fields, as 
shown in the colour bars. The observed values of PSR J0205+6449, PSR B2334+61, 
CXOU J0852-4617 and PSR B0656+14 are reported in each panel. Errors in the 
luminosities are calculated as described in the Methods section.
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Extended Data Fig. 5 | Period-Period Derivative-Luminosity tracks. The tracks of our 3D simulations in the P− ̇P− Lth space in a time span of 100 kyr (cyan lines) 
from two different view angles (left and right panels). The positions of PSR J0205+6449 and PSR B2334+61 are denoted with red discs.
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Extended Data Table 1 | Timing properties and age estimates

†: Rotational energy loss, ̇Erot = 3.9× 1046 ̇P/P3 erg/s; ‡: Magnetic field strength at the pole, assuming that rotational energy losses are dominated by dipolar magnetic torques, 
Bp = 6.4× 1019(P ̇P)

1/2
 G. *: A conservative 10% error was adopted only in the analysis and Fig. 1, despite the date was inferred for the actual detection of the supernova. **: A conservative 10% 

error was adopted in this case to account for any systematics in the SNR age characterization reported in ref. 20. Distance and age references: a: ref. 41, b: ref. 44, c: ref. 21, d: ref. 66, e: ref. 67; 
f: ref. 68; g: ref. 19, h: ref. 20.
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Extended Data Table 2 | Spectral analysis results

ϕ: Kept frozen during the fits. Quoted errors reflect 90% confidence levels. See uncertainty propagation analysis in Section ‘Predictions accounting for the uncertainty on the luminosity’ for 
the Lth of two of the sources (†). The reported best-fit parameters have been obtained assuming absorption tables by ref. 48.
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Extended Data Table 3 | Log of the XMM-Newton and Chandra observations

Exposure times and counts for the three sources.
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Extended Data Table 4 | Spectral analysis for the atmosphere model

All fits were performed assuming B = 1012 G and fixing the distance to the values reported in Extended Data Table 1; ϕ: Kept frozen during the fits. ψ: Nnsmaxg = (Rem/RNS)
2.
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Extended Data Table 5 | Classification probabilities in 4D

For the two sources PSR B2334+61 and PSR J0205+6449, the five most probable models in the 4D space, sorted by their classification probability (panel I), as well as the marginalised 
probabilities of the considered EoSs, and values for the mass and magnetic field (panels II–IV). The highest marginal probabilities are denoted with bold typeface.
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