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A B S T R A C T 

Using physics-informed neural networks (PINNs) to solve a specific boundary value problem is becoming more popular as an 

alternative to traditional methods. However, depending on the specific problem, they could be computationally e xpensiv e and 

potentially less accurate. The functionality of PINNs for real-world physical problems can significantly impro v e if the y become 
more flexible and adaptable. To address this, our work explores the idea of training a PINN for general boundary conditions and 

source terms expressed through a limited number of coefficients, introduced as additional inputs in the network. Although this 
process increases the dimensionality and is computationally costly, using the trained network to e v aluate ne w general solutions 
is much faster. Our results indicate that PINN solutions are relatively accurate, reliable, and well behaved. We applied this 
idea to the astrophysical scenario of the magnetic field evolution in the interior of a neutron star connected to a force-free 
magnetosphere. Solving this problem through a global simulation in the entire domain is e xpensiv e due to the elliptic solver’s 
needs for the exterior solution. The computational cost with a PINN was more than an order of magnitude lower than the similar 
case solved with a finite difference scheme, arguably at the cost of accuracy. These results pave the way for the future extension 

to three-dimensional of this (or a similar) problem, where generalized boundary conditions are very costly to implement. 

Key words: magnetic fields – methods: numerical – stars: magnetars – stars: neutron – neural networks – physics-informed neu- 
ral networks. 
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 I N T RO D U C T I O N  

eep learning (DL) is a subset of techniques comprehended in
achine learning that is fundamentally based on multilayered neural

etworks (NNs). In recent years, DL has been widely used to
erform a large variety of tasks. Examples include (among many
thers) computer vision (to perform image classification; Traore,
amsu-Foguem & Tangara 2018 ), face recognition (Lawrence et al.
997 ) or medical diagnosis (Kugunavar & Prabhakar 2021 ), speech
ecognition (Chan et al. 2015 ), and robotics to emulate human-like
alking and running or mobile navigation in pedestrian environments

Hayat & Mall 2013 ). 
Physics-informed neural network (PINN; Raissi, Perdikaris &

arniadakis 2019 ) is a DL approach used to numerically approximate
he solution of non-linear partial differential equations (PDEs). The
riginal idea was born more than 20 yr ago (Lagaris, Likas & Fotiadis
997 ), but the lack of the necessary computational resources made
t complicated to put it into practice. In recent years, we account
ith graph-based automatic differentiation, as well as different

rameworks that support computations in CPUs and GPUs, such
s Tensorflow or Pytorch, and a dramatic increase in computational
ower. These factors, combined with a blooming interest in machine-
 E-mail: petros.stefanou@uv.es 
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Pub
earning applications in science, have given birth to this promising
ew field. PINNs have been used, among many other applications, in
uid dynamics (Cai et al. 2021 ), nuclear reactor dynamics (Schiassi
t al. 2022 ), radiative transfer (Mishra & Molinaro 2021 ; Chen
t al. 2022 ), and black-hole spectroscopy (Luna et al. 2022 ). PINNs
ncorporate the underlying physical laws that govern a system (the
DEs) and then optimize the NN so that the residual of the PDE

s minimal. Unlike more traditional DL approaches in other fields,
INNs do not require large amounts of data – or any data at all – for

he training of the NN. 
Compared to classical finite-differences/finite-elements methods,

INNs still fall short in terms of efficiency and precision. However,
hey present some advantages as flexible, multipurpose PDE solvers.
 or e xample, the PINN formulation allows us to solve problems

n arbitrary, unstructured meshes without using high-resolution,
emory-consuming grids. In addition, once a PINN is trained for
 general problem, the calculation of a new solution is swift and
onsists only of the few operations needed during the forward pass
hrough the network. This is a potential advantage in speed compared
o classical methods. 

In this work, we assess the applicability of a PINN solver in elliptic
roblems. In particular, we focus on the problem of modelling force-
ree (FF) magnetospheres of neutron stars (NS) in the non-rotating,
xisymmetric limit. There is a wealth of work in the literature
ormulating this problem in terms of the GS equation (Glampedakis,
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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1 The 1/ l normalization factor and the coefficients b l in the expansion have 
been chosen to match the b l coefficients used in Dehman et al. ( 2023 ). 
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ander & Andersson 2014 ; Pili, Bucciantini & Del Zanna 2015 ;
kg ̈un et al. 2016 ; Akg ̈un et al. 2017 ; Akg ̈un et al. 2017 ; Kojima
017 ; Akg ̈un et al. 2018 ), which gives us the opportunity to
ake detailed comparisons and draw robust conclusions on the 

erformance and generalizability of the PINN solver. In particular, 
e have compared our results with our previous work (Akg ̈un et al.
016 ), where a finite-difference scheme based on an iterative method 
olving a block-tridiagonal system was used. 

The paper is organized as follows: in Section 2 , we give a brief
athematical o v erview of the physics of NS magnetospheres. In
ection 3 , we describe in detail how the PINN solver is built. We
resent the solutions acquired by the PINN solver with error estimates 
n Section 4 . In Section 5 , we demonstrate PINN’s capabilities
hrough an astrophysical application. Section 6 is dedicated to discuss 
ur main results and how to impro v e and generalize our approach to
ace more difficult problems in the near future. 

 M O D E L L I N G  AXISYMMETRIC  FF  

AGNETOSPHERES  

n the FF regime, and considering that the contribution of gravity, 
nertia, plasma pressure, and rotation in the dynamics of an NS 

agnetosphere is negligible compared to the magnetic force, the 
orce-balance equation reduces to the simple form 

 ∇ × B ) × B = 0 , (1) 

here B denotes the magnetic field. This regime is better suited for
agnetar magnetospheres (Thompson & Duncan 1995 , 1996 ), be- 

ause magnetars are slow rotators and the absence of any rotationally 
nduced electric fields is a very good approximation. 

In axisymmetry, we can express the magnetic field in terms of a
oloidal and a toroidal stream function P and T . We will follow
he notation and formalism as in Akg ̈un et al. ( 2016 ). We refer the
nterested reader to that work for a more detailed description. In
pherical coordinates ( r , θ , φ) and in terms of the stream functions,
he magnetic field reads 

B = ∇ P × ∇ φ + T ∇ φ, (2) 

here ∇ φ = 

e φ
r sin θ with e φ being the azimuthal unit vector. Substi- 

uting equations ( 2 ) into ( 1 ), the φ-component of the equation gives 

 P × ∇ T = 0 , (3) 

hich simply states that T = T ( P) must be a function of P (or vice
ersa). The remaining components give us the so-called GS equation 

 GS P + G ( P) = 0 . (4) 

ere, G ( P) = T ( P) dT 
dP 

is the source term accounting for the
resence of currents in the magnetosphere and � GS is the GS operator 

 GS ≡ r 2 sin 2 θ ∇ ·
(

1 

r 2 sin 2 θ
∇ 

)
. (5) 

F or conv enience, we will use compactified spherical coordinates 
see Stefanou, Pons & Cerd ́a-Dur ́an 2023 ) ( q , μ, φ), where q = 

1 
r 

nd μ = cos θ instead of the usual ( r , θ , φ). In this set of coordinates,
he GS operator reads 

 GS ≡ q 2 ∂ q 
(
q 2 ∂ q 

) + 

(
1 − μ2 

)
q 2 ∂ μμ. (6) 

To solve equation ( 4 ), we must also provide BCs and the functional
orm of the source term, that is, T ( P). The particular functional form
s arbitrary and different choices are possible. In Akg ̈un et al. ( 2016 ),
hey used 

 ( P) = s ( P − P c ) 
σ � ( P − P c ) , (7) 
here � is the Heaviside function, and s , P c , and σ are param-
ters that control the relative strength of the toroidal and poloidal
omponents, the region where the toroidal field is non-zero and the
on-linearity of the model. Ho we ver, this has the limitation that it
ssumes P > 0. A possible generalization o v ercoming this constraint 
s 

 ( P) = s ( | P | − P c ) 
σ � ( | P | − P c ) , (8) 

hich allows for currents even for negative values of P . We have
xplored different options but, for simplicity and the purpose of 
his paper, we will use a quadratic function for the astrophysical
pplication in Section 5.2 , defined as follows: 

 ( P) = s 1 P + s 2 P 

2 . (9) 

e impose BCs for P at the surface of the star ( q = 1), at radial
nfinity ( q = 0) and at the axis ( μ = ±1). Regularity and symmetry
f the problem lead to 

( q, μ = ±1) = P( q = 0 , μ) = 0 . 

In particular, one advantage of compactifying the radial coordinate 
going from r to q ) is to make it easier to impose BCs at radial infinity:
ather than imposing a specific decay rate at large r , we can impose
irichlet BCs at just one point ( q = 0). This reduces unwanted
umerical noise from the external boundary. 
At the surface, we must provide the function P( μ). Our implemen-

ation of BCs in an NN must be as general as possible but keep the
umber of parameters reasonably low. A reasonable and practical 
hoice is to use some decomposition of the arbitrary function in
erms of orthonormal polynomials. Considering the symmetry of 
ur problem and that we are working with functions describing 
agnetic fields, the natural choice is to express P( q = 1) in terms

f coefficients of a Legendre polynomial expansion. We use the 
ollowing decomposition: 

( q = 1 , μ) = 

(
1 − μ2 

) l max ∑ 

l= 1 

b l 

l 
P 

′ 
l ( μ) , (10) 

here l is the order of the multipole ( l = 1 corresponds to a dipole),
 l are the Legendre polynomials (not to be confused with P , the
oloidal flux function), and the prime denotes differentiation with 
espect to μ. Thus, the BC at the surface is completely determined
y prescribing the b l coefficients 1 . 

 M E T H O D O L O G Y  

.1 Neural networks 

Ns are universal approximators of mathematical functions (Hornik, 
tinchcombe & White 1989 ). They are the result of compositions of
imple but non-linear transformations at different layers. The way 
hat these layers are interconnected indicates the NN ar chitectur e .
ach layer contains a number of neurons that transform the inputs

eceived from the previous layer and then pass the result to the
ext layer. This transformation is done in two basic steps. A linear
ombination of the inputs received and an e v aluation through a
on-linear activation function . Mathematically, this process can be 
xpressed for each layer as follows: 

 

j = g( W 

j a j−1 + b j ) , (11) 
MNRAS 524, 32–42 (2023) 
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Figure 1. A schematic representation of a deep fully connected NN. 
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here a j is a vector containing the values of the neurons in layer j ,
 

j and b j denote the weight matrix and the bias vector of the layer,
nd g is the non-linear acti v ation function. The most commonly used
ype of architecture is the fully connected neural network (FCNN).
ach neuron is connected to all the neurons of the previous layer
nd connects to all the neurons of the next layer. The first layer of an
CNN is called the input layer , where user-provided information (the

nputs ) enter the network. The last layer is called the output layer .
his is the final result (the output ) of the network. Fig. 1 shows a
chematic representation of an FCNN. The set � of the weights and
iases of all the layers constitute the trainable parameters of an NN.
hey can be adjusted so that the relation between the input and the
utput approximates a desired function u . The process of adjusting
he trainable parameters is called training and involves the following
teps: 

(i) The network is initialized with a random set of weights and
iases. 
(ii) A number of inputs x is fed to the network. The network

ropagates the inputs through its layers, transforms them according
o equation ( 11 ) and produces some outputs ˜ u (the prediction of
he network), which depend on the inputs and on the trainable
arameters, so that ˜ u = ˜ u ( x ; �). This is called a forward pass . 
(iii) The difference between prediction and desired function is

alculated. This is done through a loss function , which is an average
lobal measure of the deviation of ˜ u ( x ; �) from u ( x ). 
(iv) The value of the loss function depends on all the trainable

arameters. Therefore, one can adjust these parameters so that the
oss is minimized and ˜ u ( x ; �) approximates u ( x ). This is done by
pplying small corrections to each weight and bias, dictated by
heir contribution to the value of the loss. This process is called
ackpropagation . 
(v) The backpropagation is performed using gradient descent

ased techniques, i.e. by calculating the gradients of the loss
unction with respect to the trainable parameters and then updating
he trainable parameters by applying corrections to them that are
roportional to those gradients. 
(vi) All these gradient calculations would be very costly if they

ere to be calculated numerically. Ho we ver, in modern machine-
earning frameworks, all operations during a forward pass are
ecorded in graphs . This allows gradients to be calculated very
NRAS 524, 32–42 (2023) 
fficiently and to machine accuracy by inverting the recorded
perations, a technique called Automatic Differentiation ( AD ) (see
aydin et al. ( 2017 ) for a detailed description of AD in machine

earning). 
(vii) These steps are repeated iteratively in order to minimize

he value of the loss. When convergence is achieved, the network’s
rediction should be a good approximation to the desired function. 

The abo v e procedure can be implemented using Tensorflow (Abadi
t al. 2016 ), a freely available software framework for machine
earning. It provides us with the tools and resources needed to develop
nd implement various machine-learning algorithms and models.
articularly, AD is implemented by the application programming

nterface (API) GradientTape , 2 which automatically records all
he operations made during the forward pass and generates the
orresponding graph used for calculating the gradients. On the
ther hand, different gradient descent optimization algorithms are
mplemented in the API Keras. 3 In this work, we used the ADAM
lgorithm (Kingma & Ba 2014 ) for all the calculations. 

A slightly different version of equation ( 11 ), where any hidden
ayer is only interconnected with its closest neighbours, are the so-
alled residual blocks . A residual block is formed if, before the
 v aluation of the acti v ation function at a certain layer j , we add the
utput of the K th previous layer (a skip connection ). Mathematically,
he output a j of a residual block corresponding to the layer j could
e written as follows 

a j = g( W 

j a j−1 + b j + a j−K ) . (12) 

tacking many of these blocks together forms a Residual Neural
etwork (ResNet), introduced first by He et al. ( 2015 ). ResNets were

ntroduced in DL to address the problem in which, by increasing the
epth of the NN, the gradients used to update the trainable parameters
end to diminish during backpropagation, making it difficult for the
etwork to learn ef fecti vely (see He et al. ( 2016 ) for a detailed
xplanation). As ResNets are not explored in the literature of PINNs
nd are straightforward to implement by extending an FCNN, we
ave additionally considered this architecture. 

.2 Physics-informed neural networks 

he standard way of training an NN accounts with data that consist
f values of the true solution in a given discrete set of points in
he input domain. Ho we ver, this approach demands a large number
f training examples to build a reliable relation between the inputs
nd the outputs. In particular, for astrophysical systems, this method
ould rely on data obtained through a large set of observations.
he key novelty in PINNs is the incorporation of information about

he physical laws into the training process. This is accomplished by
inimizing the residual of the PDEs that go v ern the system, instead

f the difference between prediction and real data/exact solution.
sing data in the loss function is optional and sometimes may

acilitate the optimization, but in practise is not necessary. 
Consider that the function u that we aim to obtain with the PINN

atisfies the following boundary value problem 

 u ( x ) − G ( x , u ( x )) = 0 , (13) 

 | ∂ D 

= f b ( x ) | x ∈ ∂ D 

, (14) 

https://www.tensorflow.org/api_docs/python/tf/GradientTape
https://keras.io/api/


Modelling FF magnetospheres using PINNs 35 

w  

t  

i  

u  

e  

n  

e  

t

J

w  

A
 

a
a  

e  

a

J
) 

w  

t  

d

u

 

i
m  

a  

t  

c  

f
t
t  

fi  

i
 

(  

S  

e  

p

u

w
t  

d  

h  

e  

o  

t  

i  

e  

o  

s  

f
d

b  

s
a  

i  

(  

o  

t
f  

a  

b  

i  

p
 

t  

s  

v

4

4

A  

c  

P  

g

h

T

f

N
w  

(  

s  

i  

t  

s  

i  

f
p  

s
 

w
d  

p  

fi
c  

p  

o  

f
 

p
a
c
d

(

 

d

P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/1/32/7199782 by M
ariano R

iccheri user on 09 June 2025
here L is a general non-linear differential operator, G is a source
erm, and x is a vector of coordinates in some domain D. The PDE
s subject to some BCs f b at the boundary ∂ D of the domain. If
˜  is an approximation to an exact solution given by a PINN, then
quation ( 13 ) will have a residual, that is, the right-hand side will
ot be exactly zero. The smaller this residual is, the closer ˜ u be to an
xact solution. Thus, the loss function is precisely a suitable norm of
his residual, defined as 

 = || L ̃  u ( x ; �) − G ( x , ̃  u ( x ; �)) || , (15) 

here the deri v ati ves of the function ˜ u with respect to the coordinates
x are also computed with AD (with the Tensorflow GradientTape 

PI). 
The function ˜ u should also satisfy the BCs ( 14 ). There are different

pproaches to implement them. The most commonly used is to add 
 term in the loss function consisting of a norm of the residual of
quation ( 14 ), so that the residuals of both equations ( 13 ) and ( 14 )
re minimized simultaneously, as follows: 

 = c 1 || L ̃  u ( x ; �) − G ( x , ̃  u ( x ; �)) || + c 2 || ̃  u ( x ; �) − f b ( x ) || x ∈ ∂ D 

, 

(16

here c 1 and c 2 are coefficients that control the relative weight of
he two terms. Then, the solution of the boundary value problem is
irectly the output N of the PINN 

˜  ( x ; �) = N ( x ; �) . (17) 

We believe that this is not the optimal way to impose BCs. The
ndividual terms in equation ( 16 ) can differ significantly, which 
eans that minimizing J does not guarantee that both the PDE

nd the BCs are satisfied with the same accuracy. In order to surpass
his problem, the coefficients c 1 , c 2 can be adjusted so that the relative
ontribution of the two terms is of the same order. This can be done,
or example, by arbitrarily choosing these coefficients and adjusting 
hem through a trial-and-error process or by calculating the neural 
ang ent k ernel of the netw ork (Wang, Yu & Perdikaris 2022 ). We
nd that, o v erall, the need for fine tuning additional hyperparameters

n this method is an inconvenience. 
Instead, we opt for an approach inspired by Lagaris et al. ( 1997 )

see also a similar one, based on distance functions in Sukumar &
ri v astav a 2022 ). In that approach, the loss function is given only by
quation ( 15 ), but the approximate solution of the boundary value
roblem is written as 

˜  ( x ; �) = f b ( x ) + h b ( x ) N ( x ; �) , (18) 

here f b is a smooth and (at least) twice differentiable function 
hat satisfies the BCs (see equation 14 ), h b is a smooth and twice
ifferentiable function that defines the boundary ( h b = 0 at ∂ D and
 b �= 0 in D), and N is the output of the network. This redefinition
nsures that ˜ u matches exactly the BCs at ∂ D regardless of the value
f N . In the rest of the domain, ˜ u should satisfy the PDE. The PINN
akes care of this by adapting N during training. We stress again that
n this approach N by itself does not satisfy the PDE (in contrast to
quation 17 ), but the combination of f b , h b , and N does. The choice
f f b and h b is not unique: variations of this functions can lead to
light changes in the convergence rate or the final value of the loss
unction (see the examples in Section 4.2.1 for a more quantitative 
escription). 
In this work, we attempt to generalize the PINN approach to 

uild a PDE solver valid for different and varied BCs (and possibly,
ource terms). We want our network to learn how to approximate 
ny particular solution for a given operator L . This means that the
nformation about the BCs should be part of the input of the network
along with the coordinates) and not hardcoded in the loss function
r in the parametrization ( 18 ). During training, the network needs
o process a large number of points x and a large number of f b 
unctions so that it can generalize and provide solutions of ( 13 ) for
ny point in the domain and any BC . Of course, f b could, in principle,
e an arbitrary continuous function. For this reason, it should be
ntelligently encoded into the network’s input to keep the number of
arameters small and manageable. 
In the following section, we present tests for our PINN solver for

he GS equation as described in Section 2 . We omit hereinafter to
tate explicitly the dependence of all the functions on the training
ariables �. 

 TEST  A N D  M O D E L S  

.1 Curr ent-fr ee GS equation 

s a first test, we consider the GS equation (equation 4 ) without
urrent, that is G ( P) = 0. We set up the various elements of the
INN solver as follows. The function h b describing the boundary is
iven by 

 b ( q, μ) = q(1 − q)(1 − μ2 ) . (19) 

he function f b that satisfies the BCs, where h b = 0, is given by 

 b ( q, μ) = q n 
(
1 − μ2 

) l max ∑ 

l= 1 

b l 

l 
P 

′ 
l ( μ) . (20) 

otice that equation ( 20 ) differs from equation ( 10 ) by a factor q n 

ith n > 0. We include this factor to enforce BCs both at the surface
 q = 1) and infinity ( q = 0). If n = 1, this parametrization is the
ame as that used in Lagaris et al. ( 1997 ) considering essential BCs
n a rectangle. Ho we ver, we prefer to leave n as a free parameter
hat is used to give more or less weight to the solution close to the
tar or away from the surface. We performed a detailed study of the
nfluence of the hyperparameters of the model, including n , in the
ollowing section. We must remark that other parametrizations are 
ossible and in principle can be tuned to impro v e the results of each
pecific problem. 

The input layer of the NN consists of the coordinates of the point
here the solution will be e v aluated ( q , μ) and the coefficients b l 
etermining the BC at q = 1. For the physical applications in this
aper, we expect the dipole ( l = 1) component of the magnetic
eld to be dominant. Therefore, we normalize all other multipole 
oefficients by dividing them by b 1 and we reduce the range of the
ossible values of b l > 1 between −1 and 1. With this choice, we can
mit the b 1 coefficient because it is reabsorbed in the normalization
actor of the magnetic field strength. 

Hereafter, we limit ourselves to l max = 7, which suffices for our
urposes and is a good compromise between generality of solutions 
nd ease of training. Increasing the number of multipoles adds 
omplexity and it would require larger networks to achieve the 
esired accuracy. Thus, one training point is defined as 

 q, μ, b 2 , b 3 , b 4 , b 5 , b 6 , b 7 ) , 

In each forward pass providing N ( q, μ, { b l } ) , the solution of the
ifferential equation at each training point i is given by 

 i = 

(
1 − μ2 

) [ 

l max ∑ 

l= 1 

b l 

l 
q n P 

′ 
l ( μ) + q(1 − q) N ( q, μ, { b l } ) 

] 

. (21) 
MNRAS 524, 32–42 (2023) 
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Figure 2. (a) Evolution of the loss function with the training epochs. The 
periodic spikes correspond to renewals of the training set. (b) Colourmap 
of the relative error (percentage) between P and P ex . Yellow dashed lines 
correspond to contours of P while black solid lines correspond to P ex . The 
multipole coefficients in f b for this particular example are b 1 = 1, b l ≥ 2 = ( −
1) l + 1 0.6. 

Table 1. Relative error norms (percentage) between PINN and the exact 
solution. The numbers shown are averages of the respective norms of 100 
new sets, consisting of 10 4 random points each. For each set, we compute the 
norms using equation ( 26 ). 

E P 

E B r E B θ E B 

L 1 norm 0.017 0.017 0.025 0.015 

L 2 norm 0.019 0.023 0.045 0.023 
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otice that the output of the network N depends both on the
oordinates and on the BCs. This is the crux of our approach, as
e want the network to be able to generalize for any BC (expressed

n terms of the b l coefficients). 
The weights and biases of the network are optimized by minimiz-

ng the loss function averaged over a large sample of training points
 max 

 = 

1 

i max 

i max ∑ 

i= 1 

[ � GS P i ] 
2 . (22) 

e consider training sets of size i max = 10 4 . At first sight, this
umber might look large. Ho we ver, we must stress that it is
equired by the high dimensionality of our problem. Our parameter
pace consists of two coordinates plus six coefficients to describe
he BC (fixing b 1 = 1). Co v ering this eight-dimensional parame-
er space with only three points in each dimension would need
 

8 = 6561 points, which makes evident the crucial difference
etween training to solve a PDE with fixed BCs or training with
rbitrary BCs (formally, an infinite number of additional parame-
ers). The training set is changed periodically e very fe w thousand
pochs in order to feed the network with as many points as 
ossible. 
Fig. 2 (a) shows the evolution of the loss function ( 22 ) with the

umber of training epochs. For this particular model, we have chosen
n FCNN architecture with 4 hidden layers and 80 neurons at each
ayer with n = 5 in f b (see the next section for details on the
hoice of these hyperparameters). The acti v ation function g (see
quation 11 ) chosen for all the hidden layers is the tanh function.
he periodic spikes correspond to renewals of the training set. They
an be understood as a measure of the ability of a model to generalize
o new, unseen points. Fig. 2 (b) shows an example of the final result
nce the PINN has been trained. The black solid lines show the
xact analytical solution which is uniquely determined by the b l 
oefficients 

 ex ( q, μ) = 

(
1 − μ2 

) l max ∑ 

l= 1 

b l 

l 
q l P 

′ 
l ( μ) , (23) 

hile the yellow dashed lines show the solution acquired
y the PINN ( P). They are indistinguishable at the fig-
re scale. The colourmap indicates the relati ve dif ference be-
ween P and P ex , at most ∼0.5 per cent for this particular

odel. 
The magnetic field components can be computed from P via AD .

rom equation ( 2 ), we have 

 r = −q 2 
∂ P 

∂ μ
, (24) 

 θ = 

q 3 √ 

1 − μ2 

∂ P 

∂ q 
. (25) 

In finite difference schemes, one usually losses accuracy when
aking numerical deri v ati v es. To e xplore the performance of the PINN
n this respect, we have computed different relative error norms of
ifferent orders ( p ) for P , B r , B θ and for the magnetic field modulus
 = 

√ 

B 

2 
r + B 

2 
θ . Results are summarized in Table 1 . These p -norms

or a given order p are calculated for every variable as in Ei v azi et al.
 2022 ) 

 u = 

‖ ̃  u ( x ) − u ( x ) ‖ p 
‖ u ( x ) ‖ p × 100 , (26) 

nterestingly, the errors are of the same order of magnitude for the
unction P and its deri v ati ves. This can be attributed to the fact that we
NRAS 524, 32–42 (2023) 
rain the PINN with a second-order PDE (the loss function involves
econd-order deri v ati ves) and this includes additional information on
he deri v ati ves. Furthermore, using automatic dif ferentiation is also
n advantage o v er finite difference schemes, where accuracy depends
n the resolution. 
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Figure 3. Evolution of the loss function with the training epochs for different 
values of the exponent n in f b . The rest of the hyperparameters are as in Section 
4.1 . 

Table 2. Relative error L 2 norms for dif ferent v alues of n . The results indicate 
a higher accuracy of the overall solution as n increases. 

p = 2 

n E P 

E B r E B θ E B 

1 0.057 0.100 0.131 0.084 

3 0.030 0.071 0.117 0.064 

5 0.019 0.023 0.045 0.023 
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Figure 4. Evolution of the loss function with the training epochs for different 
values of the number of neurons per hidden layer N . The rest of the 
hyperparameters are as in Section 4.1 . 

Table 3. Relative error L 2 norms for different values of N . The results indicate 
a higher accuracy of the solution as N increases. 

p = 2 

N E P 

E B r E B θ E B 

20 0.316 0.188 0.285 0.171 

40 0.039 0.033 0.052 0.031 

80 0.019 0.023 0.045 0.023 

Figure 5. Evolution of the loss function with the training epochs for different 
values of the number of hidden layers L . The rest of the hyperparameters are 
as in Section 4.1 . 
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.2 Influence of the PINN hyperparameters 

e have performed a detailed study to measure the influence 
f various hyperparameters of our model. In particular, we have 
onsidered the following: 

(i) Changes of the parametrization of the boundary ( q n power). 
(ii) Number of neurons at each layer. 
(iii) Number of hidden layers. 
(iv) Resnet versus FC architectures. 

We changed one hyperparameter at a time while keeping the rest
xed to the reference values of the previous section. The results of

his study are presented separately in the following subsections. 

.2.1 Changes of the parametrization of the BCs 

e begin by considering dif ferent v alues of the exponent in the q n 

erm in the boundary function ( 20 ). Fig. 3 shows the evolution of the
oss with the training epochs for three different values of the exponent
 , namely 1 (corresponding to the Lagaris parametrization), 3 and 5.
s n increases, the impact of the surface BC becomes less important.

n general, increasing n impro v es the convergence of the model and
eads to more accurate solutions. Table 2 shows the relative error
 2 norms for the four quantities that we use to e v aluate our results
 P, B r , B θ , B). All of them decrease with increasing n . 

.2.2 Number of neurons per hidden layer 

e xt, we e xplore the effect of the number of neurons per hidden layer
 . Fig. 4 shows the evolution of the loss with the training epochs for
 = 20, 40, 80. The number of neurons has a considerable impact
n the convergence of each model. This is expected, because models 
ith smaller N do not have enough free parameters to account for the

omplexity and variability of the solutions. Our results show that the 
oss reaches values that are smaller by a factor of 33 when doubling
 from 20 to 40 and by a factor of 5 when doubling from 40 to 80.
his is reflected, as well, in Table 3 , where all quantities show a
ignificant impro v ement in accurac y as N increases. 

.2.3 Number of hidden layers 

ollowing the same line of arguments, one could expect that in-
reasing the number of hidden layers L would also lead to impro v ed
onvergence and higher accuracy. Ho we ver, our results sho w that
dding more layers has a marginal impact on convergence and 
ccuracy, or it can even lead to worse results for large networks.
n other words, deeper networks are more prone to o v erfitting.
vidence of o v erfitting can be seen in Fig. 5 for L = 5. The spikes

hat correspond to renewals of the set of training points are much
igher than e xpected, ev en at the later stages of training. This is,
ndeed, reflected in Table 4 , where the model with L = 5 performs
orse in terms of accuracy than the model with L = 4 because
MNRAS 524, 32–42 (2023) 
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M

Table 4. Relative error L 2 norms for different values of L . The results indicate 
that adding more layers does not impro v e the accuracy significantly and can 
lead to o v erfitting. 

p = 2 

L E P 

E B r E B θ E B 

3 0.030 0.029 0.050 0.028 

4 0.019 0.023 0.045 0.023 

5 0.014 0.025 0.064 0.027 

Figure 6. Evolution of the loss function with the training epochs for different 
NN architectures. The rest of the hyperparameters are as in Section 4.1 . 

Table 5. Relative error L 2 norms for different NN architectures. The results 
indicate that there is no appreciable difference for the two architectures 
considered. 

p = 2 

Model E P 

E B r E B θ E B 

FCL4N80 0.019 0.023 0.045 0.023 

ResL4N80 0.018 0.019 0.034 0.018 
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Figure 7. Field lines for the current-free (red) and FF (black) cases. The 
multipole coefficients at the surface are b l > 1 = 0.5 for both. For the FF case, 
the coefficients in expression ( 9 ) for T ( P) are s 1 = 0.2, s = 0.4. 
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t is o v erfitted to the training set and fails to generalize to unseen
oints. Considering, in addition, that training deeper networks is
omputationally e xpensiv e, we conclude that increasing too much
he number of layers is not beneficial in terms of accuracy or
onvergence. 

.2.4 Resnet versus fully connected 

astly, we consider two different types of NN architectures, FC
rchitecture and ResNet architecture. Results are summarized in
ig. 6 and Table 5 . No appreciable differences can be detected
etween the two models in convergence or overall accuracy. 

.3 FF GS equation 

nce we have assessed the performance of our approach in the
acuum case by comparing our results with the analytical solutions,
e now turn to the general case ( G ( P) �= 0). 
The configuration of the PINN solver for this case is similar to

he one described in the current-free case. f b , h b , n , l max , i max , N ,
 , architecture, number of epochs and optimizer are the same as in
ection 4.1 . There are two main differences: (a) the loss function and
b) the input. The loss function now includes the non-zero source
erm G ( P) which accounts for the presence of currents and is given
NRAS 524, 32–42 (2023) 
y 

 = 

1 

i max 

i max ∑ 

i= 1 

[ � GS P i − G ( P i ) ] 
2 . (27) 

he input must include information about the functional form
f G ( P) or equi v alently T ( P). In Section 2 we modelled T to
e a quadratic function of P using two parameters, s 1 and s 2 
see equation ( 9 )). Therefore, the input of the PINN must be
xtended to include these parameters. The PINN is trained to
rovide solutions for any value of s 1 and s 2 in the same sense
hat it is trained to provide solutions for any value of the multipole
oefficients defining the BC . The input for the general FF case 
s 

 q, μ, b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , s 1 , s 2 ) . 

Fig. 7 shows, for reference, a comparison between a current-free
nd an FF magnetic field, where we observe notorious difference in
he structure of the field lines. 

We note that there can be regions in the input parameter space
here mathematical solutions do not exist (see Akg ̈un et al. 2018 ;
ahlmann et al. 2019 for a detailed discussion). This is reflected in

he evolution of the loss function, which fluctuates around values of
rder unity, meaning that there are no solutions that can minimize the
esidual of the PDE. Nevertheless, the PINN will return approximate
olutions. It is up to the user to carefully e v aluate the validity and
ccuracy of the results. A sufficiently low final value of the loss
unction is a first filter in this regard. 

The lack of analytical solutions in the general case makes it difficult
o estimate errors, which is a fundamental part of any scientific
nalysis. Despite the abundant literature on PINNs as PDE solvers
n recent years, a systematic and consistent way for measuring errors
nd deciding on the quality of the provided approximate solutions is
till lacking. Here, we adopt the following approach: 
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Figure 8. The L 2 -norm of the discretized GS equation for the current-free 
(red) and FF (black) cases as a function of the resolution N 0 . 
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(i) After our NN is trained, we create a regular grid ( q i , μj ), where
 , j = 0,..., N 0 , and e v aluate the PINN solution P at all the points
ith a forward pass. 
(ii) Then, we discretize equation ( 4 ) using a second-order finite 

ifference scheme, which gives us a different evaluation of the 
esidual εFD using the same function values evaluated in the previous 
tep. 

(iii) If P was the ‘exact’ solution of the PDE, the second-order 
esidual εFD would decrease with increasing resolution as ∼ N 

−2 
0 , 

here N 0 is the number of grid points (assuming both dimensions 
ave the same resolution). In reality, P is only an approximate 
olution with an intrinsic error εNN inherited from the quality and 
ccuracy of the PINN. Therefore, εFD will follow this power law 

nly up to the point where the PINN approximation error εNN starts
o dominate the discretization error εFD . 

Fig. 8 illustrates this behaviour. We plot the L 2 -norm of the
iscretized GS equation for both the current-free ( G ( P) = 0) and
F cases ( G ( P) �= 0) as a function of the number of grid points
 0 . In both cases the L 2 -norm drops as ∼ N 

−2 
0 until it reaches a

lateau which signalizes that εNN > εFD . We expect that, at worst,
NN will be of the order of the square root of the loss function,
ecause in equations ( 22 ) and ( 27 ) J is precisely L 

2 
2 . In other words,

hen calculating εNN for a particular example, with fixed multipole 
oefficients and source terms, we expect the error to be of the order
 

J , within a factor of a few. We note that we obtain errors of the
ame order of magnitude for both cases, with a factor of ∼5 less for
he vacuum. We expect a slightly higher error when we introduce the
urrent term G ( P), because we increase the dimensionality of the
roblem, and we also introduce non-linear terms into the differential 
quation. 

 APPLICATION  TO  T H E  M AG N E TOTH E R M A L  

VO L U T I O N  O F  N E U T RO N  STARS  

ur astrophysical scenario of interest is the long-term evolution of 
agnetic fields in NSs. The evolution of the system is go v erned by

wo coupled equations: the heat diffusion equation and the induction 
quation (see the re vie w by Pons & Vigan ̀o 2019 for more details).
hey must be complemented with a detailed specification of the 

ocal microphysics (neutrino emissivity, heat capacity, thermal and 
lectrical conductivity) and the structure of the star, usually assumed 
s fixed throughout the NS’s life. Our NS background model is
 1.4M � NS built with the Sly4 4 equation of state (Douchin &
aensel 2001 ). We use the two-dimensional (2D) magnetothermal 

ode (latest version in Vigan ̀o et al. 2021 ) developed by our group
uitably modified to implement the external BCs using the PINN 

trained as described in the previous section) to assess its performance
nd potential. In particular, this implementation allows us to quickly 
witch and compare between vacuum BCs and the barely explored 
F BCs. To our knowledge, only the work by Akg ̈un et al. ( 2018 )
as presented results from simulations that included the effect of a
agnetosphere threaded by currents. They had to implement a costly 

lliptic solver as a BC which slowed down the code considerably. The
INN implementation should, in principle, be much easier to change, 
fficient, and generalizable. 

.1 Curr ent-fr ee magnetospheric BCs 

e begin by considering a crustal-confined magnetic field topology 
nd vacuum BCs (no electrical currents circulating in the envelope 
nd across the surface). We enforce BCs via multipole expansion 
f the radial magnetic field at the surface as described in Pons,
iralles & Geppert ( 2009 ) and Pons & Vigan ̀o ( 2019 ). 
The coefficients of the multipole expansion can be computed from 

he radial component of the magnetic field at the surface of the star
s follows: 

 l = 

2 l + 1 

2( l + 1) 

∫ π

0 
B r ( R, θ ) P l ( cos θ ) sin θd θ. (28) 

uring the evolution, we calculate at each time-step the b l coefficients
sing equation ( 28 ). In the classical approach, we reconstruct the
alues of B r and B θ in the external ghost cells, explicitly 

 r = 

l max ∑ 

l= 1 

b l ( l + 1 ) P l ( cos θ ) 

(
R 

r 

)l+ 2 

, (29) 

 θ = − sin θ
l max ∑ 

l= 1 

b l P 

′ 
l ( cos θ ) 

(
R 

r 

)l+ 2 

, (30) 

here R is the radius of the NS. For conciseness, we refer to this
rocedure by the nomenclature OLD. 
In the new PINNs approach, we use the b l coefficients obtained

rom the Legendre decomposition as inputs to the PINN. The latter
eturns values of the poloidal flux function P , or any required
omponent of the magnetic field by taking deri v ati ves (equations 24
nd 25 ). Obviously, in this case (vacuum BCs), the PINN approach
oes not represent any advantage because we already know how to
uild the analytical solution. Ho we ver, we want to ensure that the
esults of the simulations do not show any undesirable effects before
oving on to a more complex case. 
To compare the different employed techniques described abo v e, 

e run axisymmetric crustal-confined magnetic field simulations 
sing the 2D magnetothermal code (Vigan ̀o et al. 2021 ) with a grid
f 99 angular points (from pole to pole) and 200 radial points. The
nitial field has a poloidal component of 10 14 G (value at the pole and
onsists of a sum of a dipole ( b 1 = 1), a quadrupole ( b 2 = 0.6) and
n octupole ( b 3 = 0.3). The initial toroidal quadrupolar component
MNRAS 524, 32–42 (2023) 
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M

Figure 9. A snapshot of the magnetic field evolution and the electric current at 10 kyr, obtained using OLD (left-hand panel) and PINN (right-hand panel). 
In the left hemisphere, we show the meridional projection of the magnetic field lines (white lines) and the toroidal field (colours). In the right hemishere, we 
display the square of the modulus of the electric current, i.e. | J | 2 (note the log scale). The crust has been enlarged by a factor of 8 for visualization purposes. 
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Figure 10. Same as Fig. 9 . A snapshot of the magnetic field evolution and the electric current at 80 kyr. Left-hand panel: FF BCs. Right-hand panel: vacuum 
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as also a maximum initial value of 10 14 G. The maximum number
f multipoles is fixed to l max = 7 for PINN and to l max = 50 for OLD.
he objective behind the use of different l max is to assess the impact
f truncating the multipole number when using the PINN. 
The results of the comparison at t = 10 kyr are displayed in Fig. 9 .

n the left (right), we show the magnetic field profiles obtained with
LD (PINN) BCs. The o v erall evolution of the magnetic field and

he electric current is very similar. Slight differences appear due to
he multipolar truncation in the PINN case. We must note that, if the
ame maximum number of multipoles is set for both systems, we
btain almost identical results. 

.2 FF magnetospheric BCs 

o couple the internal field evolution with an FF magnetosphere
INN solv er, we must e xtend the vacuum case (Section 5.1 ) with
dditional steps. In our magnetothermal evolution code, we impose
he external BCs by providing the values of the magnetic field
omponents in two radial ghost cells for every angular cell. In
he vacuum case, once the multipolar decomposition of the radial
eld o v er the surface is known, the solution in the ghost cells can
e built analytically. Ho we ver, in the general case, one must solve
n elliptic equation in a different grid that must be extended far
rom the surface to properly capture to asymptotic behaviour at long
NRAS 524, 32–42 (2023) 

o  
istances. This process is very costly because it must be repeated
ens of thousands of time-steps as the interior field evolves. In this
ituation, having trained the PINN, allows us to use it as a fast tool to
rovide required values of the solution in the ghost cells. We proceed
s follows: First, at each evolution time-step, we must know the
oroidal function T ( P) . For simplicity, in this application we use a
uadratic function. At each time step we fit the values obtained from
he internal evolution one cell below the surface. The fit provides
he coefficients of the quadratic interpolation s 1 and s 2 defined in
quation ( 9 ). Next, as described in Section 4.3 , s 1 and s 2 are provided
s additional input parameters to the forward pass. The PINN returns
he poloidal flux function P and the components of the magnetic
eld needed at the ghost cells of the magnetothermal evolution code.
ith this information, the internal evolution can proceed to the next

ime-step. 
We assume an initial FF magnetic field with a poloidal component

f 3 × 10 14 G at the polar surface and a maximum toroidal field
f 3 × 10 14 G. To understand the impact of the different BCs, we
onsider in one case FF BCs (the left-hand panel of Fig. 10 ) and in the
ther case vacuum BCs (the right-hand panel of Fig. 10 ). The results
f the comparison are illustrated by two snapshots at t = 80 kyr of
he evolution with the same initial model. We note that the initial
F magnetic field allows current sheets to thread the star’s surface.
 distinct magnetic field evolution is clearly observed if we apply
ne type of BCs or the other. The FF BCs (left) result in a stronger
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oroidal dipole close to the surface and slightly displaced towards the 
orth. The stronger toroidal component compresses the poloidal field 
ines closer to the poles. In contrast, for vacuum BCs, the poloidal
eld lines retain certain symmetry with respect to the equator, and the
ominant toroidal component is now quadrupolar and concentrated at 
he crust/core interface, as shown in the right-hand panel of Fig. 10 .
he distribution of the electric current in the stellar crust is also
ifferent. Enforced by the vacuum BCs, current tends to vanish 
round the poles and close to the surface. This is similar to what
as observed in Fig. 9 although the initial field topology is different.

nstead, with FF BCs, currents near the surface are not forced to
anish. In the left-hand panel, the slightly more yellowish region in 
he Northern hemisphere and mid-latitudes indicates that significant 
urrent flows into the magnetosphere. This difference in current 
onfigurations would have important implications in the observed 
emperature distribution, as discussed in Akg ̈un et al. ( 2018 ). We will
ddress, in future works, a more detailed exploration of the effect of
Cs since our purpose here is to illustrate with a few examples the
otential of our approach. 

 C O N C L U S I O N S  

sing PINNs to obtain a solution of a particular boundary value 
roblem is, up to date, far more computationally e xpensiv e and
rguably less accurate than using classical methods. The drawbacks 
re related to the training process, which involves the minimization 
f a high-dimensional loss function. Once a PINN is trained for a
i ven boundary v alue problem, its utility is limited because it would
e necessary to re-train to generate new solutions with different BCs.
The functionality of PINNs to real physical problems would 

ecome significantly better if their flexibility and adaptability can 
e increased. In this work, we explore this idea by training our PINN
or general BCs and source terms, expressed through appropriate 
oefficients (a limited number of them) that enter as additional 
nputs in the network. Of course, this makes the training process
omputationally more e xpensiv e, but the e v aluation of ne w generic
olutions is very fast. In our study, the coverage of the parameter
pace is not e xhaustiv e because we have used very limited com-
utational resources (a personal computer), and our purpose is to 
how that this proof-of-concept works and can already be applied to 
ome physical problems, even by non-experts in computer science. 
f necessary, it is straightforward to adapt our implementation for 
he specific needs of other applications (e.g. adding more multipoles 
n the boundary if we need to capture smaller scales, or extending
he parametrization of the BCs). We are aware that it is possible to
rastically impro v e the efficienc y of our computations by employing
PU clusters or enriching our algorithms with advanced machine- 

earning techniques and that will be required, for example, in the 
xtension to three-dimesion (3D) of this work. 

We have also explored various configurations for our network 
hrough a basic hyperparameter space study. We conclude that the 

ost impactful element is the number of neurons per layer. On 
he contrary, making the network deeper by adding more layers 
s not beneficial, beyond a reasonable minimum. Furthermore, the 
ay that the solution is parametrized to al w ays satisfy the BCs is

mportant, indicating that the human orientation in some choices 
as opposed to a zero-like approach) is still critical for physics
roblems. We also found that ResNet architectures do not offer 
ny advantage for the kind of applications that we are dealing 
ith. We emphasize that, from a theoretical point of view, for any

ontinuous function there is al w ays an NN that is able to approximate
t to arbitrary precision (see the Universal Approximation Theorem ; 
ybenko 1989 ; Leshno et al. 1993 ; Pinkus 1999 ). Ho we ver, the
heorem does not specify the properties said network (e.g. its size,
rchitecture, or the acti v ation functions) nor if it is feasible to build
nd train it with current computational capabilities, but merely 
tate that this NN e xists. F or this reason, in general, there is not
uarantee that this function can be represented by another NN, and
herefore during the training process the loss function will stagnate 
o a finite value. Moreo v er, the presence of non-linear acti v ation
unctions in conjunction with the compositional structure of NNs 
enders the associated optimization problem non-conv e x. Therefore, 
he gradient descent based algorithm used during the training process 
ay get stuck in a saddle point or in a local minimum, instead of
oving towards the global one. All these issues affect una v oidably

he convergence of the NNs. In classical numerical approaches, the 
ependence of the convergence on the implementation properties 
order of the scheme, resolution, etc.) is known and well studied. On
he other hand, in the DL field there is sparse mathematical evidence
o instruct us how to build and train a network to achieve a more
ccurate result, although it is currently subject to active research 
e.g. De Ryck, Lanthaler & Mishra 2021 ; De Ryck & Mishra 2022 ;
e Ryck, Jagtap & Mishra 2022 ; Mishra & Molinaro 2022 ). 
Nevertheless, we cannot ignore that NNs have proven to be very

ood function approximators in very distinct areas, even though per- 
ect convergence is currently unlikely to be achieved for the practical
easons mentioned abo v e. F or this particular work, our results show
hat the PINN solutions are relatively accurate, reliable, and well 
ehav ed. F or the current-free GS equation, where comparisons with
n analytical solution can be made, we found relative differences 
f typically less than 1 per cent. For the force–free GS equation,
e propose a method for estimating the error through the use of
 finite difference discretization scheme. Our analysis shows that 
olutions are accurate up to a point that we associate to the intrinsic
pproximation error of the PINN. This approach is straightforward 
o implement and self-consistent and could be set as the standard
rocedure for estimating errors of PINN-based PDE solvers in 
eneral. Even if PINNs fall short in terms of precision compared
o classical PDE solv ers, the y can still be used in conjunction with
hem in various cases. For example, many iterative solvers rely on
ood initial guesses to conv erge. A PINN can pro vide such an initial
uess to be subsequently refined by a classical method. 
The most interesting case where PINNs o v ercome the capabilities

f classical methods are physical systems with two or more domains
hat are go v erned by v astly dif ferent physical conditions and time-
cales. An example of such a case is the magnetothermal evolution
n the interior of an NS that is connected to an FF magnetosphere.
olving this problem through a global simulation in the entire domain 

s very costly due to the needs of the elliptic solver for the exterior
olution. On the contrary, PINNs provide a very ef fecti ve way of
mposing BCs at the interface of the two domains. Once a PINN is
rained, accurate enough magnetospheric solutions in a few points 
ghost cells of the interior evolution code) can be swiftly computed at
ach time-step without adding an e xcessiv e amount of computational
ost. We have shown that for the well-tested case of vacuum BC , the
INN is accurate enough to satisfactorily reproduce the reference 
esults obtained by the exact spectral decomposition approach. 
evertheless, it is about two times slower. As proof of concept,

o demonstrate the potentiality of our approach, we also presented 
esults for the less explored FF magnetospheric BCs. In this case, the
omputational cost was more than an order of magnitude smaller than
he similar problem solved with classical methods. Indeed, we obtain 
olutions that allow currents that thread the NS’s surface and flow
nto the magnetosphere, giving rise to a new family of internal field
MNRAS 524, 32–42 (2023) 



42 J. F. Urb ́an et al. 

M

c  

p  

e

A

W  

I  

E  

p  

b  

C  

1  

E  

h  

o  

U  

t  

0

D

A  

t

R

A  

A  

A  

A  

A  

B  

C  

C
C  

C
D
D
D
D
D
E  

G
H
H
H
H
K
K
K  

L
L  

L
L  

M  

M  

M
P
P
P
P
R  

S  

S
S  

T
T
T  

V  

W

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/1/32/7199782 by M
ariano R

iccher
onfigurations. We reserve a more detailed analysis of the physical
roperties of these solutions in 2D, and the more physically rele v ant
xtension to 3D, for future works. 
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