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Simulating the long-term evolution of temperature and magnetic fields in neutron stars is a major effort 
in astrophysics, having significant impact in several topics. A detailed evolutionary model requires, at 
the same time, the numerical solution of the heat diffusion equation, the use of appropriate numerical 
methods to control non-linear terms in the induction equation, and the local calculation of realistic 
microphysics coefficients. Here we present the latest extension of the magneto-thermal 2D code in 
which we have coupled the crustal evolution to the core evolution, including ambipolar diffusion. It has 
also gained in modularity, accuracy, and efficiency. We revise the most suitable numerical methods to 
accurately simulate magnetar-like magnetic fields, reproducing the Hall-driven magnetic discontinuities. 
From the point of view of computational performance, most of the load falls on the calculation of 
microphysics coefficients. To a lesser extent, the thermal evolution part is also computationally expensive 
because it requires large matrix inversions due to the use of an implicit method. We show two 
representative case studies: (i) a non-trivial multipolar configuration confined to the crust, displaying 
long-lived small-scale structures and discontinuities; and (ii) a preliminary study of ambipolar diffusion 
in normal matter. The latter acts on timescales that are too long to have relevant effects on the timescales 
of interest but sets the stage for future works where superfluid and superconductivity need to be 
included.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neutron stars, the compact endpoints of massive stars, are born 
very hot and fast-rotating. In the most magnetized cases, the so-
called magnetars, their gigantic magnetic energy powers most of 
the electromagnetic emission. Magnetic fields are at the origin of 
several effects: i) they regulate the loss of their huge rotational 
energy via electromagnetic torque; ii) their dissipation provides a 
source of heat, via Joule effect, that keeps the surface temperature 
high and enhances the X-ray thermal emission; iii) the evolution 
causes magnetic stresses, triggering instabilities which give rise to 
transient multi-wavelength phenomena. Thus, understanding the 
magnetic field dynamics in detail is of utmost importance for this 
class of sources.

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
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0010-4655/© 2021 The Authors. Published by Elsevier B.V. This is an open access article
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
The magneto-thermal evolution of neutron stars (see a recent 
review [1]) relies on two evolution equations: the heat diffusion 
equation (at the base of the so-called cooling models, reviewed in 
[2]) and the induction equation. They are coupled and need a de-
tailed specification of the local microphysics (neutrino emissivity, 
heat capacity, thermal and electrical conductivity) and the struc-
ture of the star, usually assumed as fixed throughout the neutron 
star’s life.

The seminal papers in the Nineties describing and estimating 
the main effects of magnetism at play in magnetars [3–5] laid the 
foundations for more quantitative studies. In the last 15 years, neu-
tron star models dedicated to thermal evolution have been grad-
ually incorporating the effects of magnetic fields, and numerical 
simulations have been increasing their complexity. These modeling 
efforts can be broadly separated into two types: focused on the 
crust, or on the core. The magnetic evolution in the solid crust is 
relatively easy to describe by assuming the ions to be fixed in their 
equilibrium positions in the solid lattice (i.e., neglecting its elas-
ticity/plasticity). Under this approximation, the Maxwell equations 
 under the CC BY-NC-ND license 
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reduce to the electron magnetohydrodynamics (eMHD) limit [6,7], 
in which electrons are the only charged component free to move. 
Such equations apply also to other scenarios in plasma physics and 
astrophysics [8–14].

The first eMHD simulations in axial symmetry [15,16] were 
soon extended to include fixed stratification (i.e., radial depen-
dence in the simplified electron density and electrical conductiv-
ity profiles) [17–21]. In parallel, other models included from the 
beginning a realistic stellar structure and consistently calculated 
microphysical inputs [22]. This paved the way to the first simu-
lations with the magnetic evolution fully coupled to the cooling 
models, initially neglecting the Hall effect [23–25]. A significant 
step forward was the incorporation of relativistic corrections and 
the combined effects of Ohmic dissipation and the Hall effect 
[26], still in axial symmetry. The latter, which is improved in this 
work, presents so far the only available magneto-thermal evolu-
tion code with fully realistic microphysics. Meanwhile, the first 
simulations of the magnetic evolution in 3D [27–30] adapted the 
geo-dynamo code PARODY [31] to the neutron star scenario, again 
with a fixed stellar structure and simplified microphysical coeffi-
cients, which are assumed having only a radial dependence. Other 
semi-analytical studies included modeling of the crustal plasticity 
in the eMHD equations [32,33]. Direct applications to astrophysical 
scenarios stem from all these works (e.g., [34–38]).

In the core, the situation is more complex due to its multi-
component nature and fundamental open issues remain about the 
formulation of the problem itself. Several studies have suggested 
that ambipolar diffusion [3,39] could be the driving mechanism 
behind field evolution in young magnetars [4,5], typically relying 
on estimates of the relevant timescales [40–43]. Numerical analy-
ses have been restricted to 1D [44,45] and 2D [46–49] so far but 
lack a consistent treatment of the thermal and magnetic evolution 
based on realistic microphysics.

In this paper we start closing this gap and provide new results 
on ambipolar diffusion in normal-matter neutron star cores, fol-
lowing the formalism by [50]. This will form the basis for future 
work that incorporates the presence of quantum condensates that 
are likely present in the interiors of mature neutron stars, but com-
plicate the field evolution further and are beyond the scope of this 
paper [51,52,47,53].

The aforementioned numerical works exploit the spherical sym-
metry of the background stellar structure by using spherical co-
ordinates combined with finite-volume/finite-difference methods 
along the radial direction, where gradients of physical quantities 
are usually steep. In these studies, two main families of numer-
ical methods have been used, according to the discretization of 
the induction equation in the angular direction. The most com-
mon approach relies on the spectral decomposition of potential 
functions in spherical harmonics; however, it requires an analyt-
ical manipulation of the equations [54]. The second family stems 
from [26] and applies finite-volume methods to evolve the mag-
netic field components, allowing them to resolve the magnetic 
discontinuities. A third option existing in the literature [48] is rep-
resented by finite-difference simulations with a scalar potential 
formalism.

Besides the complex coupling between local microphysics, heat 
diffusion, and global magnetic evolution, the main challenge of 
fully consistent magneto-thermal simulations lies in the non-
linearity of the induction equation. Here we aim at providing a 
detailed assessment of numerical ingredients helping build a sta-
ble finite-volume code able to simulate typical magnetars’ condi-
tions. We also describe for the first time the structure of the code 
and highlight the computational cost and scalability of its differ-
ent components. The simulations are in axial symmetry and use 
a modular code structure which improves in accuracy and effi-
2

Fig. 1. Hall prefactor fh for a realistic neutron star crust, considered up to a mass 
density ρ = 1010 g cm−3 (in this case corresponding to a radius R10 = 11.56 km, 
using the SLy4 equation of state with M = 1.4 M�). The colored lines represent the 
fit with a piecewise function fh,fit = f0 exp [k(r − Rcc)

b], where Rcc = 10.81 km is 
the crust-core interface and the parameters are: f0 = 0.011, k = 10, b = 1.8 in the 
outer crust 11.33 km < r < R10 (blue), and f0 = 0.006, k = 8, b = 1.2 in the inner 
crust Rcc < r < 11.33 km (red). Note that the specific fit depends on the equation 
of state and mass, but in general the functional form is super-exponential in radius, 
steepening in the outermost layers due to the decrease in density. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this 
article.)

ciency the different versions used by our group during the last 15 
years.

The paper is structured as follows. In § 2 we briefly summarize 
the problem and the equations. In § 3 we present the relevant nu-
merical methods and ingredients. In § 4 we carry out an analysis 
of such methods from a numerical point of view, a computational 
analysis of our code, and a performance study of the most im-
portant parts. Finally, we show two representative simulations in 
§ 5; the first one focusing on crustal field evolution for a non-
trivial initial topology and the second one dedicated to an analysis 
of ambipolar diffusion in the core. We draw conclusions and state 
our future works in § 6.

2. Magneto-thermal models

2.1. Background star’s structure

Realistic magneto-thermal models need to assume a back-
ground structure for the star in order to calculate necessary micro-
physical ingredients, such as the electron density ne . The structure 
is provided by the Tolman-Oppenheimer-Volkoff equations [55], 
which solve the hydrostatic equilibrium assuming a static interior 
Schwarzschild metric ds2 = −e2ν(r)c2dt2 + e2λ(r)(dθ2 + sin2 θdφ2), 
where e2λ = 1 − 2Gm(r)/(c2r) and ν(r) is determined by dν/dP =
−(P (r) +ρ(r)c2)−1, where m(r) is the enclosed gravitational mass, 
ρ is the energy density and P is the pressure. The relativistic 
length correction eλ is hereafter included in the definition of the 
line and surface elements of the integrals and in the operators 
�∇ containing the radial derivatives (see e.g. [1] for details). Note 
that the deviations from a spherically symmetric hydrostatic pro-
file due to the inferred/observed values of magnetic fields and 
rotation are negligible for our purposes (see [56,57] for magnetic 
deformations). For the crustal field evolution, an important quan-
tity (as we will describe later) is the Hall prefactor fh = c/(4πene). 
To contrast with the profile assumed by other works [58,18,21,28], 
in Fig. 1 we show the radial profile of fh for a typical star (M =
1.4 M� , SLy4 equation of state [59]) employed in our simulations. 
It exhibits a super-exponential rise of about three orders of mag-
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nitude from the crust-core to the crust-envelope interface, here 
assumed to be at around 1010 g cm−3.

2.2. Heat diffusion equation

The heat diffusion equation governs the evolution of the tem-
perature T (see e.g. [2]). Within a given volume V enclosed by a 
surface S , the integral form reads:∫

V

cv
∂(T eν)

∂t
dV +

∮
S

(e2ν �F · n̂) dS =

=
∫
V

e2ν

(
j2

σe
− ε̇ν

)
dV , (1)

where several microphysical ingredients evaluated in the local 
frame (and generally dependent on density, temperature and mag-
netic field) are needed: cv is the specific heat; the heat flux density 
�F is obtained by the Fick’s law:

�F = −e−ν κ̂ · �∇(eν T ) , (2)

where κ̂ is the anisotropic thermal conductivity tensor; the source 
term includes the rate per unit volume of Joule heating j2/σe , 
where σe is the electrical conductivity parallel to magnetic field 
lines (see below) and neutrino losses ε̇ν . The electrical currents j
are calculated, at each point of the star, according to their defini-
tion (see § 2.4). The microphysical ingredients entering in eq. (1)
and (2) are summarized in the next subsection.

2.3. Microphysics

A complete revision of the microphysics entering in the mag-
neto-thermal models is given in [2]. For the sake of brevity, here 
we simply summarize the main microphysical inputs to be com-
puted, considering the background structure and the local values 
of temperature and magnetic field:

• Thermal and electrical conductivities. The microphysical pro-
cesses that contribute to the transport properties strongly 
depend on temperature and density. In the core, conductiv-
ities are very high, which implies that the core is basically 
isothermal (except in the first few decades after birth), and 
the electrical resistivity is orders of magnitude smaller than 
in the crust, implying much longer Ohmic timescales. In the 
outer crust (relatively low density) the dominant process is 
electron-phonon scattering, while electron-impurity scattering 
becomes the most relevant process in the inner crust for tem-
peratures low enough. For weak magnetic fields, the conduc-
tivity is isotropic. On the contrary, for high magnetic fields, the 
anisotropy is significant and the thermal conductivity is repre-
sented by a tensor. Its components are calculated using the 
public code released by A. Potekhin. We refer the interested 
reader to the website1 for more details and a complete list of 
references. In this work, we employ the 2019 release, slightly 
modified to switch off quantizing effects in the crust to speed 
up the calculations. Under strong quantizing fields, the real 
conductivity as a function of density oscillates about the clas-
sical values, due to the gradual filling of Landau levels. More 
details about the formalism can be found in Section 2 of [2]. 
These oscillations are more prominent at very low density, but 
for our purposes, and for our spatial resolutions, the few per-
cent corrections that the quantized prescription provides do 

1 http://www.ioffe .ru /astro /conduct/.
3

not justify the increase in required computational time by one 
order of magnitude (considering that microphysics calculations 
are the computational bottleneck, see below).

• Specific heat. The bulk of the total heat capacity of the neutron 
star is given by matter in the core, where most of the mass is 
contained. The crustal specific heat has contributions from the 
ion lattice, the degenerate electron gas, and the neutron gas in 
the inner crust (see [24] and references therein for the mod-
els used here, and [60] for a detailed discussion). If neutrons 
appearing beyond the neutron drip point are not superfluid, 
they control the specific heat in the inner crust, but their con-
tributions are exponentially suppressed when the temperature 
drops below the neutron superfluid critical temperature [61]. 
For a detailed computation of the crustal specific heat we use 
the publicly available codes,2 describing the equation of state 
for a strongly magnetized, fully ionized electron-ion plasma 
[62]. We also refer to the recent reviews [2,1] for more de-
tails.

• Neutrino emissivity. Neutrino emission processes drive the cool-
ing of the star during the first ∼ 105 years (neutrino cooling 
era), after which the star is cold enough to hamper neutrino 
production such that the surface photon emission dominates 
(photon cooling era). We use the same formulae for neutrino 
processes as described in Table 1 of [2], where a detailed list 
of references can be found.

• Superfluidity. We implement superfluidity corrections to the 
previous quantities for neutrons (singlet state) in the inner 
crust, and for neutrons (triplet) and protons (singlet) in the 
core. The critical temperature and the energy gap as a func-
tion of the Fermi momenta are approximated by the effective 
parametrization of [63], with different possible choices for the 
parameters, given by Table II of [64]: we will show results for 
their models SFB, TTpa, CCDKp.

2.4. Magnetic field evolution equations

The integral form of Faraday’s induction law for a surface S
reads (in Gaussian units):

∂

∂t

∫
S

(�B · n̂) dS + c

∮
∂ S

(eν �E) · d�l = 0 , (3)

where n̂ is the normal to the surface and d�l is the line element 
along the surface border ∂ S . The definition of the electric field �E
generally includes the electric currents �j, defined by Ampère’s law 
in its conservative form as∫
S

(�j · n̂) dS = c e−ν

4π

∮
∂ S

(eν �B) · d�l . (4)

Note that in axial symmetry, the poloidal-toroidal decomposi-
tion of any solenoidal field is particularly easy, �Btor = Bϕϕ̂ and 
�Bpol = Brr̂ + Bθ θ̂ , and each corresponding component of the cur-
rents depends only on the other magnetic field component: �j =
�jpol(�Btor) + �jtor(�Bpol).

2.4.1. Crust
In the crust, we include the Ohmic and the non-linear Hall term 

in the definition of the electric field:

ceν �E = η �∇ × (eν �B) + fh

[ �∇ × (eν �B)
]
× �B . (5)

2 http://www.ioffe .ru /astro /EIP/.

http://www.ioffe.ru/astro/conduct/
http://www.ioffe.ru/astro/EIP/
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The pre-factors on the right-hand side are the diffusivity η =
c2/(4πσe) and the Hall prefactor fh . Due to their inverse depen-
dences on the electron density and electrical conductivity σe re-
spectively, they both vary by orders of magnitude across the crust, 
as shown in Fig. 1 for f H . The diffusivity is similarly steep in the 
radial direction and, since it includes temperature-dependent pro-
cesses, it may also present angular variations up to a factor of a 
few. More importantly, σe in the outer crust increases by orders 
of magnitude as the star cools down (see e.g. [2,1]). At the same 
time B tends to decay, therefore the relative weight of the two 
terms in the electric field varies non-trivially in time. The associ-
ated timescales vary accordingly by orders of magnitude.

Note that our crustal induction equation neglects terms such 
as the thermo-electric effect [54], relevant possibly only at high 
temperatures and in the outermost layers of the star (enve-
lope).

2.4.2. Core
The core physics is more complex and having a consistent mag-

netic field evolution framework is not trivial, in particular due to 
the presence of superconducting protons. In this work, we include 
the ambipolar diffusion in normal-conducting, non-superfluid mat-
ter based on the formalism [50]. Ambipolar diffusion, a direct re-
sult of the core’s multi-component nature, is caused by the relative 
motion between the charged particles and the neutrons. It can be 
incorporated into our field evolution model via an ambipolar veloc-
ity �va that enters a generalized Ohm’s law:

ceν �E = η �∇ × (eν �B) − eν �va × �B , (6)

where �va ≡ xn(�vp − �vn). Here, xn denotes the neutron fraction and 
�vp, �vn the proton and neutron velocities, respectively. We neglect 
the Hall term because strong coupling between the electrons and 
the protons renders it basically irrelevant in the core. However, we 
retain the ambipolar term, which looks like an advective term, but 
is highly non-linear (approximately cubic) in B , since the relative 
velocity between the charged components (protons and electrons) 
and neutrons is roughly proportional to the Lorentz force, as we 
discuss next (see also [3]). Assuming equilibrium (i.e., neglecting 
the time derivatives in the momentum equations for each species), 
the ambipolar velocity can be defined by

�va = x2
nτpn

m∗
p

[ �fL

ne
− ∇(�μ)

]
, (7)

where τpn ∝ T −2ρ1/3 [65] represents the relaxation time for 
proton-neutron collisions, m∗

p the proton effective mass and ne

taken as the charge density (under the assumption of charge neu-
trality). While the Lorentz force �fL ≡ (�j × �B)/c is straight forward 
to calculate, the chemical potential term requires an additional 
constraint. Only early on in a neutron star’s life are β-reaction suf-
ficiently fast to achieve equilibrium on dynamical timescales and 
thus �μ ∼ 0. As we aim to model the magneto-thermal evolu-
tion over longer timescales, we require an additional equation for 
the chemical deviation. Following [47], we solve the elliptic equa-
tion

∇2(�μ) − 1

b

∂�μ

∂r
− 1

a2
�μ = ∇ ·

( �fL

ne

)
− 1

b

f r
L

ne
, (8)

where the parameters a and b, controlled by nuclear reaction rates 
and microphysics, have the dimension of length, and f r

L is the 
radial component of the Lorentz force. They are defined as fol-
lows: 1/a2 := λaβ/xn , 1/b := dβ

dr , where β := m∗
p/(xnneτpn) and 

λa = λa(T , ρ) is the coefficient describing the net β-decay reaction 
4

rate, linearized: �� 	 λa�μ. The λa coefficient is ∝ T 4ρ1/3 for 
direct Urca processes or ∝ T 6ρ2/3 for modified Urca (see formu-
lae (18)-(19) in [50] and references within). For a given, uniform 
temperature and magnetic field configuration, [47] calculated the 
corresponding velocity fields, imposing vr

a = 0 at the crust core 
interface. Since chemical imbalances can balance only the irro-
tational part of �fL, the velocity-field patterns are mostly irrota-
tional when the star is hot (T 	 109 K, i.e., newly born stars), or 
solenoidal at temperatures of a few 108 K, relevant for observed, 
middle-aged neutron stars.

We go beyond this analysis, solving the equations above to 
derive the ambipolar velocity at each numerical timestep (i.e., con-
sidering the evolving temperature to evaluate λa and τpn at each 
point), and including it consistently into the core induction equa-
tion. This improves on recent works [46,49], by having more re-
alistic microphysical coefficients, including the thermal evolution, 
and smoothly coupling the core evolution to the crust. As a first 
step, in this work we neglect the neutron velocity and the ef-
fects of superconductivity. The background neutron velocity has 
been taken into account by [46,49], who found a faster evolu-
tion in their specific models. Similarly, superconductivity makes 
τpn much longer than in the case considered here, thus giving 
much higher values of �va (with, consequently, further computa-
tional challenges).

2.5. Initial conditions

The temperature at birth is ∼ 1011 − 1012 K. Its precise value is 
not important for our purposes of long-term evolution, since the 
intense neutrino losses at such temperatures lead to the conver-
gence to the same cooling curve after few years/decades.

For the magnetic field, instead, the initial condition is crucial: 
the first centuries will be dominated by transient whistler and 
Hall-drift waves if the solution is particularly out of eMHD equilib-
rium (which is the case also if we start from a MHD equilibrium) 
and if the initial configuration does not match smoothly with the 
chosen boundary conditions.

The initial magnetic field in our code is prescribed by using 
the scalar functions � and � for the poloidal and toroidal com-
ponents as in [54,22,25], which easily allow for the definition of 
multipoles. The first model, Core, includes the ambipolar diffusion 
and uses the same initial twisted-torus model as in [50], where the 
toroidal field is contained within the closed field lines and, auto-
matically, the azimuthal component of the Lorentz force is initially 
zero everywhere. In order to have faster dynamics and test the nu-
merical methods needed for the Hall term, we also consider two 
models where the magnetic field is confined to the crust. In order 
to test the methods under different topologies, we consider two 
cases, shown in Table 1: one, CrP, dominated by a poloidal dipole 
and one, CrM, consisting of a mix (with a similar weight) of the 
first three multipoles l = 1, 2, 3, with similar content of energy be-
tween poloidal and toroidal components. The general dynamics of 
the CrP case are well known, leading to an equatorial disconti-
nuity on the Br and Bϕ components. Less trivial models, like CrM, 
are much less studied and we will mainly consider that case in our 
assessment.

Note that all the options considered in this paper and in all 
previous numerical simulations are arguably unrealistic (e.g., crust-
confined fields, or large-scale, smooth dipole/quadrupole+twisted 
torus). As a matter of fact, the dynamo mechanism during and 
just after the collapse [4], should lead to a much more complex 
topology, likely characterized by a repartition of the energy over a 
spectrum of multipoles both in the core and in the crust, no axial 
symmetry and possibly an off-set of the magnetic moment from 
the center. This is an open issue from both a theoretical and a nu-
merical point of view.
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Table 1
Summary of the initial configurations of the models considered: dipolar poloidal 
field at the polar surface, total magnetic energy, toroidal magnetic energy fraction, 
non-zero multipoles in the poloidal component, and toroidal topology.

Bdip
[G]

Emag

[1045 erg]

Etor
mag

Emag

%

Poloidal
l

Toroidal

Core 1014 5.2 2.9 1 torus
CrP 1014 16 0.6 1 l = 2
CrM 1013 1.9 54 1,2,3 l = 1,2,3

2.6. Boundary conditions

In both the heat diffusion and induction equations, the in-
teraction with the external environment plays an important role. 
The outermost layers host the steepest gradients in the structure 
and temperature profiles. Therefore, the timescales there are much 
shorter than in the interior: it is numerically unfeasible to directly 
evolve the magnetic field and temperature up to the star’s surface. 
The usual approach, undertaken here as well, is to include the en-
velope as a boundary condition, implicitly assuming that, because 
of the much shorter thermal relaxations timescales, the tempera-
ture profiles very quickly adjust to the equilibrium solution.

Regarding the thermal evolution, we rely on hydrostatic enve-
lope models with a given composition (light or heavy elements), 
obtained separately for a set of internal temperatures (at the bot-
tom of the envelope) and magnetic fields. For a given composition 
and assuming an emission model (blackbody in our case), this al-
lows us to infer the surface temperature and flux at each point 
of the surface for the underlying internal temperature and mag-
netic field. We make use of the analytical fit to such models, as 
given by [66], where more details about the envelope models can 
be found. The envelope model is important in controlling the pho-
ton emissivity, which is the dominant cooling mechanism at late 
ages (� 105 yr).

For the magnetic field, we assume potential solutions as an 
external boundary condition, meaning no electrical currents cir-
culating in the envelope and across the surface. We enforce this 
condition via multipole expansion of the radial magnetic field at 
surface, as almost all studies assume (but see the effect of a mag-
netosphere threaded by currents in [67]).

Internally, for the models including the core, we impose a sim-
ilar potential solution in the central cell (meaning simply that no 
currents can circulate right in the center). The difference is that at 
the surface we use the branch of solutions regular at infinity (each 
multipole l goes like B ∝ r−(l+2)), while in the center the one reg-
ular at vanishing radius (B ∝ r(l−1)).

Finally, we impose at the axis reflecting boundary conditions on 
both temperature and magnetic field, derived by the axial symme-
try assumption.

2.7. Crust-core interface

If the magnetic field is confined to the crust, we impose zero 
tangential electric field components at the interface between the 
crust and the core. This means that the radial magnetic field is 
kept to zero all the time, while the tangential component of the 
magnetic field can evolve. This naturally creates a current sheet 
that allows a discontinuity between a non-magnetized core and a 
crust threaded by currents. Since η is discontinuous across the in-
terface, the fine details of the treatment of the supercurrents affect 
the local deposition of heat. In our grid, the current sheet flows 
along a three-radial-point layer, and for simplicity is not consid-
ered in the Joule heating.

In the more realistic case of a core-threading magnetic field, 
the situation is much more intricate. The crust is made of a lat-
tice of very heavy nuclei, while the core is composed of a liquid 
5

phase of uniform nuclear matter (neutrons, protons, and electrons). 
In principle, these very different conditions allow for the electric 
field entering the induction equation to present a discontinuity in 
the radial direction if one has a sharp crust-core interface. How-
ever, in reality, there is arguably a transition layer, the pasta phase 
[68], whose transport properties are very uncertain (see [69] for a 
review). As one goes deeper into the inner crust, nuclei lose their 
regular shape, which could result in a higher electron resistivity 
[70] (but see [71]). Conversely, as density increases, nuclei dissolve 
as we approach the uniform nuclear matter phase, and we could 
expect that the microphysical properties become more similar to 
those of the core.

For practical purposes, and considering our limited knowledge 
of details of the transition, we prescribe a smooth matching of 
the electric field components. We define a transition region of 
∼ O(102) meters (10 numerical points) around the crust-core in-
terface. Within the transition region, we redefine the electric field 
via a cubic interpolation of the values of �E appearing at its two ex-
tremes in the radial direction (i.e., inner crust and outer core). This 
interpolation ensures that the radial profile of the three electric 
components and their radial derivatives are continuous. It substan-
tially improves the stability of the code, avoiding the occurrence of 
unstable discontinuities at the interface.

3. Numerical methods and ingredients

The magneto-thermal code is implemented in Fortran90/95
and represents an improvement of different versions of this code 
used previously by our group [23,22,25,26,67]. The current itera-
tion features a fully modular structure with an integrated CMake
build system that helps making the code easier to maintain, de-
velop and extend. The codebase contains modules devoted to 
physics (thermal evolution, magnetic evolution and microphysics), 
others for data structures and support (grid and constants), utility 
ones (output) and an external module for making use of third-
party libraries.

Fig. 2 shows a flowchart of the main program of the code. In 
the initialization, the star’s structure is calculated for a given equa-
tion of state and central pressure, the input parameters are given 
(initial temperature, magnetic field strength and topology, impurity 
parameter, superfluid model, envelope model and numerical meth-
ods to be used), and some fixed quantities and mathematical func-
tions (e.g., numerical grid, relativistic factors, geometrical elements 
and Legendre polynomials) are calculated. Then, the code enters 
into the main loop, within which there are three main parts: mi-
crophysical calculations, magnetic field evolution and thermal evo-
lution. Note that the rotational evolution is a by-product coming 
from the evolution of the dipolar component at surface, B p(t). 
Therefore, it can also be performed as a post process, for a given 
spin-down formula including or not inclination angle evolution [1]. 
Similarly, one can calculate as a by-product the magnetic stresses 
and, knowing the maximum shear from microphysics, estimate the 
frequency of crustal failure events, as in [72–74].

The methods we describe here are based on the conservative 
formulation shown in § 2, applying the Stokes’ and Gauss theo-
rems to each numerical cell, as described in detail in [1]. Below, 
we go through a series of numerical ingredients that allow to in-
crease the accuracy, numerical stability and the efficiency of the 
code.

3.1. Discretization on the grid

In axial symmetric problems involving a stably stratified star, 
the spherical coordinates (r, θ, ϕ) are the natural choice since they 
allow us to discretize the star in radial layers (see Appendix A for 
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Fig. 2. Flowchart of the magneto-thermal 2D evolution code. Thermal evolution 
blocks are highlighted in red, microphysics parts in blue, and magnetic evolution 
steps in green. In parenthesis there are the optional by-products of the calculations.

Fig. 3. Numerical grid, represented through a simplified meridional cut of one hemi-
sphere. The black points indicate all locations where the three components of the 
magnetic field, electric currents and electric fields are defined, while the temper-
ature is only evolved at the center of the cells delimited by the solid lines. Ghost 
cells used in the code to impose boundary conditions are indicated with dashed 
lines.

the issues arising from the implementation of the model in Carte-
sian coordinates). The cells cover the star from the center to the 
putative crust-envelope interface, called bottom of the envelope 
or, for simplicity, surface R� , where we apply the boundary condi-
tions for both evolution equations. This interface, strictly speaking, 
moves outward in time, due to the gradual freezing of the outer 
layers, as locally the temperature drops below the melting value. 
However, for practical purposes, we consider a fixed grid and sim-
ulate the star down to densities ρb ∼ 1010 g cm−3. According to 
the cooling models, at such a density, the freezing happens at 
T ∼ 0.5 − 1 × 109 K, corresponding typically to an age of a few 
decades: ideally, one would need to reach one to two orders of 
magnitude less in density, to cover the entire crust at middle ages 
(� 105 yr). However, the numerical timestep and stability con-
straints arising from the steep rise of fh and η put limitations on 
the location of such an interface.

The radial size of the cells, dr, needs to be much finer in the 
crust than in the core, since in the outer layers the radial gradients 
of the background (density, pressure) and temperature profiles are 
much larger than in the inner ones. We define a smooth transi-
tion from a large step in the core to a small step for the crust by a 
function dr(r) ∝ 1 −0.5�dr tanh[(r − r0)/(R�σt)] where �dr ∈ [0, 2)

denotes the contrast (i.e., the relative difference between large and 
small steps), r0 and σt mark the position and size of the tran-
sition region respectively. In this paper, we set r0 = 0.8R� (thus, 
well below the crust-core interface), �dr = 0.8 and σt = 0.1. We 
have made sure that results do not depend on these parame-
ters, as long as a radial resolution � 50 m in the outer crust is 
granted.

The angular step size, dθ , is instead taken as constant. Under 

axial symmetry, the axis is treated with standard reflective bound-
ary conditions in the angular direction. In general, the angular 
6
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gradients tend to be much smaller than the radial ones (especially 
in the crust), reason why dr is chosen to be ∼ O(10m) in the crust, 
while r dθ ∼O(100m).

We sketch the grid in Fig. 3, indicating with lines the merid-
ional section of the cells, which are Nr and Nθ in the meridional 
and radial direction, respectively. Typically, we use Nr = 100 (of 
which 37 lie in the crust) and Nθ = 49 (the latter being odd in 
order to have a cell centered at the equator). The temperature val-
ues that are evolved lie at the center of the cells, while the heat 
fluxes are defined in the middle of their interfaces. A simple aver-
age between the first neighbors is used when temperature values 
are needed on a cell’s vertexes or interfaces (in order to evaluate 
the electrical/thermal conductivities or the temperature gradients 
appearing in the heat flux).

On the other hand, magnetic fields, electric fields and currents 
are defined and evolved at the black points in Fig. 3: center, mid-
dle of the interfaces and vertexes of each cell. The points where 
the magnetic field is evolved are therefore 2Nr and 2Nθ − 1 in 
the radial and angular direction, respectively. This contrasts with 
previous versions [26], which used one staggered grid where elec-
tric and magnetic components were defined in displaced loca-
tions, naturally arising from the discretized conservative form of 
the equation for a cell. The advantage of electro-magnetic fields 
evolved on a full grid is that no interpolations are needed, since 
all components are defined everywhere. However, the method still 
relies on Stokes’ theorem applied to the interfaces centered on the 
evolved point.

At each point labeled by the angular and radial indexes (i, j), 
we define the volume cell V (i, j) , the interface areas normal to each 
k direction, S(i, j)

k , and the line elements along each m-direction 
dl(i, j)

m . Such elements are widely used in the discretization version 
of eqs. 1, 3 and 4 (see [1] for the definitions).

Importantly, note that the full grid used, being effectively a 
superposition of two staggered grids in each direction, conserves 
exactly the divergence, like a standard staggered grid. As a mat-
ter of fact, the Gauss theorem applied to the evolution of �∇ · �B , 
together with the induction equation (3), reads:

d( �∇ · �B)(i, j)

dt
= c

V (i, j)

∑
(k,l)=(i±1,l),(i, j±1)

∮
∂ S(k,l)

eν Emdlm , (9)

where the sum is performed over the six surfaces delimiting a 
given cell at (i, j), two of which (those having a normal in the 
azimuthal direction) do not give any net contribution due to axial 
symmetry. For each surface, we consider the line integral of the el-
ements of circulation Emdlm . Such elements are located at one of 
the staggered points (i, j ± 1, i ± 1, j), so that each of them ap-
pears twice with opposite sign. Therefore, they cancel out and the 
right-hand side is zero by construction, exactly like in a standard 
staggered grid.

The fact that the full grid is effectively composed by double 
staggered grids in each dimension also means that the numeri-
cal results actually consist of the co-existence of two numerical 
solutions. The origin of the double solution is that the magnetic 
field on odd points is determined by the electric field on even 
points and vice versa, and the numerical boundaries of the odd 
and even points are slightly different by definition. The solutions 
are coupled only partially by the Hall term. As a consequence, 
we see from our simulations that the results tend to show odd-
even decoupling. This issue is substantially cured by: (i) impos-
ing as a boundary condition a linear interpolation among the two 
radially-neighboring points at the point just below R� (and above 
Rcc for crust-confined models), for the toroidal components of both 
the vector potential Aϕ (from which the poloidal field is calcu-
lated) and magnetic field Bϕ ; (ii) adding hyper-resistivity, espe-
cially at late stages (see below).
7

Fig. 4. Typical evolution of dtcrust(r) (considering the minimum over θ at each r), 
for model crM, at different times. Note that in general the minimum is located in 
the last cells.

3.2. Cooling scheme and microphysics

The heat diffusion equation can be solved by standard meth-
ods for parabolic equations with stiff terms, since the neutrino 
emissivities are highly nonlinear with the temperature, ∝ T α , with 
α ∈ [5, 8] [2]. The Joule term ∝ σe(T )−1 can also be treated as stiff, 
even though the dependence with T is less dramatic. Such stiffness 
is well managed by implicit methods relying on the linearization 
of the source term and the inversion of the tridiagonal block ma-
trix M, which relates the updated set of Nr × Nθ values T̃ n+1

a , to 
the previous set T̃ n

a , where T̃ ≡ T eν is the redshifted temperature 
and a labels each cell: Mab T̃ n+1

b = va(T̃ n), where va is the vec-
tor which also collects the old temperatures, the sources and the 
dependencies of the sources on the local temperatures T n

a . The el-
ements of the matrix arise from the discretization of the problem 
on a spherical coordinate grid and the use of standard centered 
differences to evaluate the gradients in the heat flux �F .

After less than a century the core becomes isothermal (con-
stant T̃ , see e.g. Fig. 3 of [75]). Thus, we solve the equations at 
all core points only until T̃ is homogeneous (relative differences 
less than 0.1%). After that (approximately at 100 yr), we instead 
consider the core as one radial layer only, which leads to a sub-
stantial computational time saving. We do that by considering the 
correct weighted average of the specific heat and neutrino emis-
sivity in the core, but evolve only one temperature, considering 
the thermal conductivity only at the crust-core interface. We made 
sure that the results converge to the case where we evolve all 
points.

Temperatures are not allowed to be smaller than 106 K, be-
cause the microphysics implemented are not suitable for such 
regimes. Therefore, 106 K is taken as a floor value, which means 
that the cooling model can follow the star up to ∼ 106 yr maxi-
mum.

3.3. Adaptive timestep

The cooling and magnetic timescales vary a lot during the star’s 
life. As the neutron star cools down, there are two effects: on one 
side, neutrino emissivities drop by many orders of magnitude; on 
the other side, the matter becomes more thermally and electri-
cally conductive. As a consequence, using a fixed timestep over 
Myr-long times would incur in an unnecessary large computational 
cost: it is advisable to adopt two different dynamical definitions of 
the numerical timestep, one for each equation.

For the cooling, one can use a timestep, dtc , increasing with 
time, since the temperature variations are much larger at the be-
ginning. In our case we use typically a phenomenologically in-
creasing value, starting with dtc = 10−2 yr during the first years 
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(when the drop in temperature is very fast), increasing it to 
dtc ∼ t/100 until it reaches a large value which is kept uni-
form, dtc ∼ 100 − 1000 yr. This choice is not fine-tuned for op-
timization and could be more elegant, but it is a practical imple-
mentation that ensures stability in the implicit scheme described 
above.

More complicated is the timestep used in the magnetic evo-
lution (dtb) since the intensity and topology of the magnetic field 
define the Ohmic, Hall and ambipolar timescales, together with the 
conductivity and the electron density. Any precise assessment of 
the Courant-limited maximum value for dtb is hampered by the 
non-linearity of the problem. As a matter of fact, the character-
istic velocities of the eMHD equations can be obtained only in 
their linearized version (see [76]), i.e., perturbations on top of a 
background field, which is not the case of our realistic scenario. 
Therefore, we simply introduce the local estimate on dimensional 
grounds in the crust and in the core, as:

dtcrust(r, θ) = (min{dr, rdθ})2

η(r, θ) + fh(r)B(r, θ)
, (10)

dtcore(r, θ) = min{dr, rdθ}
|�va| . (11)

The spatial resolution enters quadratically in the crustal esti-
mate, in agreement with the non-linear dispersion relation of the 
whistler waves in eMHD. The timestep can then be defined dy-
namically at each step as follows:

dtb = kcour min
r,θ

{dtcrust(r, θ),dtcore(r, θ)} , (12)

where kcour is a constant pre-factor that ideally depends only on 
the numerical scheme and needs to be tuned, as we will see below. 
The magnetic timestep is severely constrained by three factors: (i) 
high resolution, (ii) high magnetic field, (iii) low values of dtcrust
of the outermost layers, where the denominator is systematically 
the largest. In Fig. 4 we show the evolution of minθ {dtcrust}(r) for 
the model CrM. Its value steeply decreases from centuries in the 
inner crust to fractions of years in the outermost layers, thus con-
straining the above-mentioned crust-envelope interface, ρb , to be 
∼ 1010 g cm−3 at most, to make the computation feasible (see e.g. 
the discussion in §2 of [75]). mentioned above. In model Core, 
dtcore is orders of magnitude larger than dtcrust, which remains 
the timestep bottleneck (this would probably not hold anymore 
if superconductivity was accounted for in the ambipolar veloc-
ity).

For magnetar-like values of B , dtb has to be much smaller 
than dtc chosen above. Therefore, each cooling timestep embeds 
many magnetic timesteps, visible as the green nested loop in the 
flowchart Fig. 2. The microphysical ingredients are updated to-
gether with the temperatures, so that the electrical conductivity 
appearing in the induction equation changes every dtc , and not 
every dtb (the second option would incur in a notable additional 
computational cost with a limited gain in accuracy).

3.4. Time advance schemes

We have implemented and compared four different time ad-
vance methods:

• Simple Euler (EUL), with which all components of �B are ad-
vanced just by multiplying dtb with the increment of the mag-
netic field, δ �B .

• Alternate Euler (EULA) as in [26], in which: (i) �Btor is evolved 
from �Epol; (ii) the evolved �Btor is used to calculate �jpol and 
update �Etor, which now depends on a mix of old and updated 
8

components; (iii) �Bpol is evolved using the intermediate �Etor. 
This alternate advance actually corresponds to introducing an 
implicit hyper-resistive-like term (proportional to fourth-order 
derivatives) in the poloidal components of the induction equa-
tion [77].

• Fourth-order-accurate Runge-Kutta (RK4);
• Fourth-order-accurate Adams-Bashforth (AB4), which consid-

ers the combination of the increments δ �B of the current and 
the three previous timesteps. The first three timesteps at the 
beginning of the simulation are evolved by EUL method (this 
choice does not really affect the results or the stability, being 
restrained to three steps only).

We will assess the optimal performance of each method for a given 
set-up and initial conditions, based on the maximum value of kcour
we can set without having numerical instabilities or loss of conver-
gence.

Note that the numerical errors are always dominated by the 
space discretization, unless one is able to keep very close to the 
maximum Courant time (which is impossible in our realistic, com-
plex scenario). Therefore, the accuracy of the solution does not de-
pend on the time advance method, which instead shows different 
performance in terms of stability (see § 4). As in other contexts, 
such differences arise from the fact that each time discretization 
method can implicitly add some numerical diffusivity which stabi-
lizes the solution.

3.5. Toroidal magnetic field advance

We now consider the spatial discretization of the induction 
equation. First, we consider two options for the time advance of 
the toroidal magnetic field, which in axial symmetry coincides 
with the azimuthal component, �Btor = Bϕ ϕ̂:

a. The use of the poloidal electric field �Epol within the simplest 
discretization of Eq. (3):

∂ B(i, j)
ϕ

∂t

S(i, j)
ϕ

c
=

= (eν Erdlr)
(i+1, j) − (eν Erdlr)

(i−1, j)

+(eν Eθdlθ )
(i, j−1) − (eν Eθdlθ )

(i, j+1) , (13)

where the quantities in parentheses are the elements of the 
electric field circuitation and are evaluated at (i ± 1, j) and 
(i, j ± 1), i.e., the first neighboring cells in the angular and 
radial direction.

b. The use of a finite difference for the part of the electric field 
containing the Hall term, known for its Burgers-like behavior 
in axial symmetry [78,26]. In this case the toroidal component 
of the induction Eq (3) can be re-written as:

∂ Bϕ

∂t
+ λr

fheλ

∂

∂r

(
fheν B2

ϕ

2

)
+ (14)

+λθ

r

∂

∂θ

(
B2

ϕ

2

)
+ c

Sϕ

∮
∂ Sϕ

(eν �Eres) · d�l = 0 ,

where �Eres = �jpol/σe is the resistive part of the poloidal elec-
tric field, its circuitation is discretized as in Eq. (13), and we 
have defined

λr = −2 fh
cot θ

r
, (15)

λθ = −r2 e2ν

λ

∂
(

fh
ν 2

)
. (16)
e ∂r e r
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Fig. 5. Example of the difference in the toroidal field advance method: profiles of 
Bθ (top) and Bϕ (bottom) for model crM at t = 17 kyr, using the Burgers-like pre-
scription (blue) or the electric field circulation (magenta). In both cases, the poloidal 
magnetic field has been advanced with the upwind-like scheme, to enhance the role 
of the toroidal field advance method. In this specific case, we used Nr = 100 and 
Nθ = 49, and the EULA scheme with kcour = 0.5.

In analogy with Burgers’ equation, the factors fheν B2
ϕ/2 (or 

simply B2
ϕ/2 for the θ -direction) can be interpreted as the 

flux, and λr Bϕ and λθ Bϕ have velocity dimension. Note that 
the solenoidal constraint is still maintained thanks to ax-
ial symmetry: �Btor(r, θ) does not contribute to the diver-
gence.

The second choice is crucial to resolve the discontinuities that 
appear due to the Hall term in the crustal induction equation. As 
a typical example, we show in Fig. 5 the comparison of Bθ (θ)

and Bϕ(θ) just below the surface, for the choices a. (magenta) 
and b. (blue), for model crM, at an illustrative time of 17 kyr. 
Whenever magnetic discontinuities are created, the Burgers-like 
approach is able to resolve them and maintain a clean profile. On 
the other hand, choice a. implies a noisy and oscillating profile, 
which gives rise to a spurious current and electric field, ultimately 
affecting also the local temperature (by artificial extra Joule heat-
ing). Note that such oscillations are not due to Courant-violation 
instability (the numerical solution converges to the one shown for 
different dtb): they are indeed caused by the spatial discretization 
scheme.

3.6. Poloidal magnetic field advance

The advance of the poloidal field, which in 2D is given by 
�Bpol = Br r̂ + Bθ θ̂ , is performed by means of the simple toroidal 
vector potential evolution equation:

∂ Aϕ = −c eν Eϕ , (17)

∂t

9

so that the two poloidal field components are obtained at each 
timestep by applying the Stokes’ theorem on Aϕ with a surface 
S = Sr or S = Sθ

3:∫
S

(�B · n̂) dS =
∮
∂ S

Aϕ dlϕ . (18)

The toroidal electric field �Etor = Eϕ ϕ̂ is given by

�Etor =
�jtor

σe
+ 1

cene

�jpol × �Bpol , (19)

where, for each cell (i, j), we consider two options to define �Bpol:

c. A centered scheme, simply using the local values Br = B(i, j)
r

and Bθ = B(i, j)
θ .

d. An upwind-like scheme, assessing the poloidal electron ve-
locity �vpol ≡ −�jpol/(ene): for instance, if j(i, j)

r > 0 (i.e., neg-

ative radial velocity), then Bθ = B(i, j+1)
θ , and if j(i, j)

θ > 0 then 
Br = B(i+1, j)

r . Note that normally upwind methods are accom-
panied by reconstruction methods (e.g., minmod in [26]); in 
our case, we instead simply take the value of the field already 
defined and evolved at the upwind interface of the cell cen-
tered at (i, j).

As before, the second choice offers a much better accuracy in 
the presence of discontinuities. In Fig. 6 we compare, as an ex-
planatory case, the tangential magnetic field meridional profiles in 
the crust, just below the surface, for model crM at a late stage, 
t = 80 kyr. The choice c. (cyan) is contaminated by strong os-
cillations, which, as above, provide artificial extra currents and 
unphysical additional heating (to which, as above, the solution 
converges numerically if the timestep is changed, thus discarding 
a Courant-violation origin). Instead, the choice d. (blue) offers a 
very clean profile, maintaining and resolving all the discontinu-
ities.

3.7. Hyper-resistivity

In order to further reduce the appearance of numerical noise, 
we consider the application of an explicit hyper-resistive term 
in the ϕ-component of the induction equation. Its aim is ide-
ally to dissipate the shortest spurious waves (wavelength � grid 
size, where numerical instabilities usually appear), without chang-
ing the global solution. Since the magnetic field is divergence-
less, the following identity holds: ∇2 �B = �∇ × ( �∇ × �B). We then 
consider two possible operators based on fourth-order deriva-
tives.

The first one is to apply four times the Stokes operator S to 
Bϕ , so that:

∂t �Btor → ∂t �Btor − ηcurl4�
2S4 �Btor . (20)

Note that S applied on the value B(i, j)
ϕ includes only the first 

neighbors in each direction, (i ± 1, j ± 1). Therefore, this opera-
tor is able to smooth out oscillations down to a minimum scale of 
twice the magnetic grid size.

The second possibility is to apply twice a finite-difference vec-
tor Laplacian operator to the toroidal field

3 Note that the line integral operator and the time advance operators numerically 
commute, so that if we directly evolve the �Bpol components we obtain the same 
results at a round-off level. However, Aϕ is a useful quantity (for instance, to draw 
the magnetic field lines and to apply boundary conditions), so evolving it directly 
avoids its reconstruction.
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Fig. 6. Example of the difference in the poloidal field advance method: profiles of Bθ

(top) and Bϕ (bottom) for model crM at t = 80 kyr, using the upwind prescription 
(blue) or the centered scheme (cyan). In both cases, the toroidal magnetic field has 
been advanced with the Burgers-like scheme, to enhance the role of the poloidal 
field advance method. Resolution and time advance method are as in Fig. 5.

∂t �Btor → ∂t �Btor − ηlapl2�
2∇2(∇2 �Btor) , (21)

where ∇2 �Btor includes first and second-order derivatives, which 
are evaluated by standard second-order accurate centered formu-
lae. Therefore, it couples 5 points, odd and even, in each direction 
and is able to damp oscillations of the grid size.

In both cases, the pre-coefficient includes the grid size squared 
�2 = [1/dr2 + 1/(r dθ)2], and a dimension-less free parameter 
ηcurl4 or ηlapl2. In order to avoid changing the global solution 
(and not to cause further restrictions to the timestep), typically 
we found ηcurl4 � 0.1 and ηlapl2 � 0.001, for which the additional 
numerical dissipation of energy is not more than a few percent in 
∼ 105 yr (after several millions of time steps).

The use of hyper-resistivity helps stabilizing the code especially 
for fine resolutions or high initial magnetic fields at late times (�
105 yr), when the star is cold and the Hall term dominates. The 
explicit hyper-resistivity can be applied in combination with any 
of the other space and time discretization methods detailed above. 
In the simulations shown in this paper, we do not apply it.

4. Numerical and computational analysis

We now analyze the methods outlined above and our imple-
mentation from various points of view: numerical convergence, en-
ergy conservation, stability, and a theoretical computational com-
plexity analysis including a performance study of the most impor-
tant blocks of calculation.

4.1. Convergence

In Fig. 7 we show as an example the convergence of the nu-
merical solution as we increase the radial resolution, in this case 
10
Fig. 7. Convergence with numerical radial resolution Nr = 50, 100, 200, with Nθ =
49 (number of thermal cells): radial profile of Bθ (top) and Bϕ (bottom) for model
crM, at 1, 10 and 50 kyr (red, green and magenta, respectively). Here we show the 
EULA method, with kcour = 0.5, but other methods behave similarly.

for model crM evolved with the EULA method. The radial profile 
of any component of �B , �j and �E (we show here the representative 
case Bθ and Bϕ for model crM at different times) for Nr = 100
and 200 are very close to each other and resolve better the re-
gions with the largest gradients, compared with the case Nr = 50. 
The meridional resolution behaves similarly, as shown in Fig. 8, 
which shows the meridional profile of Bθ at the surface, close to 
which the largest differences are seen.4

In general, RK4, AB4 and the EUL all converge to the same 
numerical solution for small-enough timesteps. Instead, the EULA 
method evolves with slight differences, which are more evident 
close to the surface and tend to decrease with spatial resolution. 
This is due to the fact that the EULA scheme corresponds to the 
introduction in the equations of a hyper-resistivity term in the 
poloidal field evolution, so that the discretized equations result to 
be slightly different. In Fig. 9 we show how the numerical methods 
perform in resolving the naturally arising current sheets, like the 
ones that develop at the equator for model CrP. The plot shows 
the meridional profile of jr two points below the surface. Note that 
spectral methods would not be able to resolve such sharp peaks 
in currents (i.e., large discontinuities in the magnetic field compo-
nents).

In general, the largest differences with resolution and between 
the different finite-volume methods tend to appear mostly in the 

4 Note that the application of the boundary condition for the magnetic field re-
quires in general the integral over the surface of quantities involving Br(θ) or Aϕ(θ)

(see [1]), the accuracy of which depends on the angular resolution. Therefore, the 
meridional resolution affects not only the capability of resolving the eMHD dynam-
ics, but also the reconstruction of the Bθ corresponding to the potential solution at 
the boundary.
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Fig. 8. Convergence with numerical angular resolution Nθ = 49, 100, 200 with Nr =
100 (number of thermal cells): meridional profile of Bθ at the surface for model
crM, at 1 and 50 kyr (red and magenta respectively), with the same numerical 
methods as Fig. 7.

Fig. 9. Comparison of different methods in their ability to resolve the current sheet 
(we show jr two points below the surface) for model CrP, at t = 3 kyr, for EULA 
(blue), RK4 (red) and AB4 (green): they all basically overlap. All of them use the 
Burgers-like and upwind-like formulations.

outermost layers during the initial transient phase (lasting some 
centuries) and disappear soon after.

Besides the magnetic field details shown here, the global quan-
tities (dipolar component at the surface, magnetic energy, inte-
grated Joule heat, luminosity) converge to the same result. A res-
olution Nθ = 49, Nr = 100 is already able to capture the most 
important features.

Note that a more quantitative assessment of the convergence 
order and the accuracy are basically unfeasible. As a matter of fact, 
the dependence of the result non-linearity of the problem and the 
interplay between magnetic field, microphysical coefficients and 
temperature is such that: (i) no analytical solutions are available, 
and (ii) the dependence of a given local or global quantity with 
resolution is non-trivial and time-dependent. Anyway, even for a 
simplified problem where such analysis could be available (for in-
stance, constant temperature, microphysical coefficients and a sim-
plified magnetic topology), we would not expect the convergence 
order to be higher than 1, due to the spatial scheme used. On the 
other hand, higher-order spatial schemes would likely cause addi-
tional instabilities (see [76]).

4.2. Energy conservation

The fulfillment of energy balance [25] can be evaluated by look-
ing at how well the total energy is conserved in time:

Etot(t) = Emag(t) +
t∫

Q j dt′ +
t∫

Pout dt′ , (22)
0 0

11
Fig. 10. Conservation of energy for model crM with Nr = 100 and Nθ = 49, EULA 
method (the same plot holds for the other finite-volume methods), upwind and 
Burgers-like schemes: total energy (Balance, solid line), star’s magnetic energy 
(red dashes), time-integrated incoming Poynting flux (blue dot-dashed line), time-
integrated Joule dissipated heat (green dots). The numerical total energy loss after 
100 kyr in this case is of about 22%.

where Emag = ∫
V�

eν(B2/8π) dV� is the magnetic energy stored in 
the star, Q j = ∫

V�
(e2ν j2/σe)dV� is the volume-integrated (positive 

definite) Joule dissipation rate, and Pout = (1/4π) 
∫

S�
[e2ν(�E × �B) ·

r̂] dS� is the outgoing Poynting flux integrated over the outermost 
cell interfaces (surface S�).

The decrease in magnetic energy is caused by the Joule dissi-
pation. The Poynting flux across the surface is usually negative, as 
a direct result of the internal dissipation: as the poloidal field de-
creases inside, the magnetospheric field also shrinks in response, 
thus causing a gradual loss of magnetic energy stored in the mag-
netosphere.

In Fig. 10, we show the numerical results for model crM. The 
numerical loss of the total integrated energy, 1 − Etot(t)/Emag(t =
0), is in the range of 18 − 27% at 100 kyr, for resolutions Nr, (Nθ +
1) ∈ [50, 200], where finer resolution allows a better conserva-
tion. Besides the finite resolution, part of the numerical energy 
loss comes from the approximations made at the crust-core in-
terface (see § 2.7). When hyper-resistivity is included, the numer-
ical dissipation adds an additional energy loss of a few percent at 
most.

4.3. Methods: stability and optimum timestep

Generally speaking, numerical instabilities in eMHD magneto-
thermal simulations are prone to appear especially during two 
stages: (i) during the first centuries due to the fast transient waves 
associated with the out-of-equilibrium initial conditions; (ii) when 
the magnetization parameter fh B/η exceeds � 100, either because 
of very strong fields B � 1015 G, or because the conductivity be-
comes relatively high when the star cools below T � 108 K, which 
happens around the switch from the neutrino-dominated era to 
the photon-dominated era (O(105) yr). The instabilities during the 
first stage tend to appear in the outermost layers of the crust, 
where fh is larger. It represents a caveat against the quantitative 
meaningfulness of results for very young stars, but it is usually 
transient (the resistivity is high and tends to damp short and fast 
waves) and does not affect the results at observationally mean-
ingful ages � kyr. On the other hand, the late-stage instabilities 
can be reflected in artificial bumps in the calculated tempera-
ture map and luminosity, caused by the Joule heating associated 
with the perturbations combined with the fact that the neutron 
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Table 2
Optimal value kopt that guarantees stability up to 10 kyr, for different methods for 
model CrP, with temperature fixed or evolving as indicated. The resolution indi-
cates the angular times radial number of points in the crust where magnetic field 
is evolved.

Method T [K] Points kopt

EULA evo. 99 × 75 0.8
RK4 evo. 99 × 75 0.3
AB4 evo. 99 × 75 0.2

EULA 109 99 × 75 0.8
RK4 109 99 × 75 2.3
RK4 109 199 × 150 1.7
AB4 109 99 × 75 0.2
EUL 109 99 × 75 0.1

EULA 108 99 × 38 0.9
EULA 108 99 × 75 0.8
EULA 108 99 × 150 0.8
RK4 108 99 × 75 0.1
AB4 108 99 × 75 0.2
EUL 108 99 × 75 < 0.02

star’s temperature and heat capacity are greatly reduced. This is 
one of the factors limiting the validity of the simulations at times 
� 105 − 106 yr.

Our methods aim at extending as much as possible the range 
of feasibility of the simulation, in terms of stability and computa-
tional time. We define kopt as the maximum value of kcour, defined 
in eq. (12), that allows numerical stability (defined as absence of 
noise in the magnetic field profiles), for a given configuration and 
method. We show the results in Table 2, where we have compared 
the solutions of model CrP up to 104 yr. We have considered dif-
ferent resolutions, and either a fixed T = 108 or 109 K, or the full 
magneto-thermal evolution. The largest values of kopt are found 
for EULA and RK4. However, RK4 suffers from a few problems: (i) 
kopt decreases notably for lower temperatures (i.e., higher magne-
tization) and (ii) for higher resolution; (iii) it is in general slower 
than EULA because, even in the case where kopt is larger for RK4, 
each timestep contains four sub-steps. The other methods (AB4 
and EUL) are much slower, having small values of kopt and much 
longer CPU time. Note that in all cases the introduction of the 
hyper-resistivity can at best increase only slightly the values of 
kopt.

Moreover, for all methods kopt becomes much smaller when 
later ages (i.e., temperatures below 108 K) are considered. As a 
matter of fact, in both cases (early and late instabilities), the trig-
ger is numerical and a typical signature is the high-frequency noise 
in the profile of the magnetic field components, breaking any topo-
logical symmetry analytically expected (for instance, in the evolu-
tion of a pure dipole). The non-linearity of the equations makes 
them grow, unless the resistive terms cure it. This is why the 
late-time instabilities for high magnetization parameters are intrin-
sically harder to be cured, and lowering the timestep may not be 
enough.

We conclude that the EULA method is the most efficient one, 
being the fastest one and the only one showing a value of kopt ∼
0.8 almost independent of the resolution and of the model; a 
choice kcour � kopt is advised for simulations up to � 105 yr. If later 
ages t � 106 yr are considered, kcour ∼ 0.1 and hyper-resistivity 
should be used.

4.4. Computational analysis

As base models to assess the computational cost, we run mod-
els CrP and Core, both for 1 kyr and 100 kyr, with Nr = 100 and 
Nθ = 49, using the EULA scheme with kcour = 0.5, the Burgers-
like and upwind-like discretization schemes described above. We 
analyze the asymptotic computational complexity for each one of 
12
Fig. 11. Runtime of the whole simulation (CrP model up to 1 kyr, with the same 
setup as in Table 3) as a function of Nθ for a fixed Nr = 100 (red line) or a function 
of Nr for a fixed Nθ = 49 (blue line). We observe a linear scaling for Nr and a 
worse, non-linear one for Nθ , due to the contribution of the matrix inversion, here 
performed with our Thomas algorithm implementation.

Fig. 12. Runtime for the thermal evolution matrix inversion as a function of num-
ber of blocks (angular points Nθ , filled points) or as a function of the diagonal 
inner dimension (radial points Nr , empty points, multiplied by 10 for better visual-
ization). We compare our Thomas’ algorithm implementation (red) and Intel’s MKL 
one (blue) to run one matrix solving call.

the parts that compose the main simulation loop. In Table 3 we 
gather the big O notation and the fraction of computational cost 
of the most relevant parts (accounting together for ∼ 95% of the 
total runtime). Most of the time is spent in the magnetic evolu-
tion in these cases: (i) in both 100 kyr runs, since on average the 
magnetic timestep is much smaller than the cooling timestep; (ii) 
at all times for the Core model, where the elliptic equation (8)
related to ambipolar diffusion is solved by the costly matrix inver-
sion (using the same algorithm of the thermal evolution). However, 
the microphysics and the matrix inversion for the cooling scheme 
can represent the majority of the cost at the beginning of the 
crust-confined simulation (see CrP up to 1 kyr), or in general 
for weak magnetic fields (not shown here). This is due to the fact 
that in those cases the magnetic and cooling timesteps are com-
parable, and the single computations of microphysics and thermal 
matrix inversion are much more costly than the magnetic evolu-
tion.

We have then analyzed the raw performance of the code. As 
shown in the complexity analysis, the two parameters that have 
the greatest impact on runtime are the grid dimensions Nθ and 
Nr . Therefore, we have conducted a performance study of the 
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Table 3
Summary of the complexity analysis for the most computationally costly subroutines sho
the fraction of runtime they take to run models CrP and Core, up to 1 or 100 kyr, wi
treatment.

Block Complexity Runtime [%]
Core

(1 kyr)

Conductivities O(Nr Nθ ) 16.2
Thermal Evolution O(Nr N3

θ ) 46.5
Heat Capacity O(Nr Nθ ) 2.2
Neutrino Emissivity O(Nr Nθ ) 3.4
Magnetic Evolution O(Nθ Nr) 28.5
code runtime5 in terms of those two parameters within reason-
able ranges: (Nθ + 1), Nr ∈ [50, 200]. We show the results from
CrP model up to 1 kyr in Fig. 11. As we can observe, the runtime 
ranges between 50 − 800 seconds depending on the resolution; 
furthermore, as expected, the computational cost has a steeper de-
pendence on Nθ than on Nr .

The reason for the worse scalability of Nθ is related to the 
matrix inversion algorithm in the thermal evolution. Since the ma-
trix inversion has an important weight in the computational cost 
of a simulation, we have tested two ways, numerically equivalent 
at round-off level: (a) the manual implementation of the stan-
dard Thomas algorithm relying on the LU decomposition6; (b) the 
Intel Math Kernel Library (MKL) [79] implementation, which fea-
tures highly optimized, threaded, and vectorized math functions 
that maximize performance on each processor family (which, in 
this case, treats the block tridiagonal matrix as a band matrix and 
solves it by calling LAPACK subroutines for factoring and solving 
band matrices following a custom version of the Thomas’ algo-
rithm too). The latter shows a significant reduction in the compu-
tational cost of the whole matrix solving calls (as we can observe 
in Fig. 12, the MKL implementation scales better with speedup fac-
tors of ∼ ×2 − 5 depending on the diagonal’s inner dimension and 
the number of blocks). On the other hand, such libraries may not 
work out of the box for every system and performance may differ 
if Intel processors are not used (and even between different fami-
lies of Intel hardware), so that the well-known Thomas algorithm 
can be coded from scratch.

5. Case studies

5.1. Crustal-confined multipolar initial field

As a representative example, we show the evolution of model
crM, with Nθ = 49, Nr = 100 and the optimal methods discussed 
above (EULA time advance, kcour = 0.1, Burgers-like treatment, up-
wind formulation). In Fig. 13 we show the internal distribution of 
magnetic field (poloidal field lines in white, toroidal field in colors) 
and temperature, at t = 0, 1, 10, 50 kyr. Detailed meridional pro-
files of the magnetic field components and temperature just below 
the surface are also shown in Fig. 14. Throughout the simulations, 
multiple magnetic poles (where the tangential magnetic field is 
zero and the field is purely radial) are maintained at θ ∼ 1.3 and 
2.2, besides the ones imposed by axial symmetry, θ = 0, π . As one 
can see, in between the locations of the magnetic poles, strong 

5 All experiments were run in the following test machine: Ubuntu Linux 18.04, 
Intel i7-4790K (4.00 GHz), 16 GiB DDR4 RAM, Samsung 840EVO SSD drive for out-
put storage. Code was compiled with CMake 3.0 and gfortran 7.5.0 with O3
optimization flag enabled. Note that the implementation is single-threaded.

6 The Thomas algorithm is optimized if the dimension of each block is less than 
the number of blocks, i.e., if the dimension with less points (usually θ , i.e., Nθ ) is 
swept in the inner diagonals, and the blocks sweep the more numerous dimension 
(Nr ).
13
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wing the asymptotically worst-case complexity for each one of the subroutines and 
th Nr = 100 and Nθ = 49, EULA scheme, kcour = 0.5, with upwind and Burgers-like 

CrP

(100 kyr) (1 kyr) (100 kyr)

14.7 50.4 6.7
10.2 32.6 3.4
1.4 3.1 0.7
0.8 3.7 0.8
49.1 8.6 74.8

Fig. 13. Evolution of magnetic field and temperature for the crust-confined multipo-
lar model crM, showing the meridional projection of the magnetic field lines (white 
lines) and the toroidal field (colors) on the left, and the internal temperature dis-
tribution (right), at t = 0, 1, 10, 50 kyr. The crust has been enlarged by a factor 8 
for visualization purposes. We use the optimal methods (EULA with kcour = 0.5, up-
wind and Burgers’-like schemes), and a resolution of Nr = 100, Nθ = 49. The crust 
has been enlarged a factor 8 for the sake of clarity.
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Fig. 14. Evolution of the multipolar model crM of Fig. 13, showing the meridional 
profile just below the surface for the poloidal (top) and toroidal (middle) magnetic 
field components and for the temperature (bottom), at t = 1, 10, 100 kyr (blue, red, 
and green respectively).

sheets form, visible as steep profiles in Br(θ) and Bϕ(θ), and a 
spike in Bθ (θ). These structures last long despite being prone to 
more dissipation: they are continuously fed and maintained by the 
Hall dynamics, which compensates the enhanced dissipation.

Note that the capability of the schemes presented here to nu-
merically resolve the formation and evolution of such sharp cur-
rent sheets is superior to less accurate schemes (for instance, 
purely centered with no upwind or treatment of the Burgers 
terms) and to spectral methods, which naturally tend to recon-
struct such steep gradients with high multipoles (see for instance 
the small structures appearing around the discontinuities in Fig. 2 
and 3 of [22]).

The effects of the anisotropic conduction (induced by the mag-
netic field) on the temperature are clear by looking at the merid-
14
Fig. 15. Evolution of magnetic field and velocity for the Core model at t =
0.01, 1, 10, 100 kyr (from top to bottom). The crust-core interface is visible as a 
solid line. In the left hemisphere we show the meridional projection of the mag-
netic field lines (white lines) and the toroidal field (colors). In the right hemisphere 
we show in colors the magnitude of ambipolar velocity (core) and Hall velocities 
(in the crust, reduced by a factor 104 for visualization clarity). We use Nr = 100, 
Nθ = 49.

ional profiles of the temperature at the outermost crustal layer 
(bottom panel of Fig. 14). Each magnetic pole corresponds to a 
spike in the temperature, which can be a few times larger than 
the rest of the star. This kind of behavior is reflected in the surface 
temperature (for given envelope and emission models) and, even-
tually, in the spectra and light curves (not treated here, see e.g. 
[80–83]). Quantifying the effects and interpreting the physical im-
plications is out of the scope of this technical paper and will be 
dealt with in future works.

5.2. Core evolution with ambipolar diffusion

Here we show a run with model Core, including normal mat-
ter (no superfluidity), and the ambipolar diffusion described above. 
We evolve the temperature and use those values to calculate the 
ambipolar diffusion coefficients.7 At the same time, we evolve the 
magnetic fields both in the crust and in the core as explained 

7 Due to numerical limitations, we enforce a floor value for the temperature 
entering the calculations of τpn and λ, which control �va . Our minimum value, 
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Fig. 16. Evolution of the radial profiles at the equator of the three components of 
the magnetic field (top panel), electric field (middle panel) and electrical currents 
(bottom panel), for the simulation of Fig. 15. The components Br and jr are omitted 
as they are very close to zero due to the topology. We show the profile at the 
transition region between the crust and the core (the interface is located at 10.8 
km), at t = 1 kyr and t = 50 kyr (blue and red respectively).

above. In Fig. 15 we show the evolution of the magnetic field in the 
left hemisphere. In the right hemisphere we show the velocities: 
in the core we present |�va|, while in the crust the Hall velocity 
fh|�j| (the latter reduced by a factor 104 in order to have the same 
range).

The main result is that the resulting ambipolar velocity is only 
a fraction of km/Myr, orders of magnitude below the crustal Hall 
velocities. Therefore, the magnetic field barely changes over 100 

T amb
min = 2 × 108 K, is reached after about 3 kyr, which suggests that after this time 

we might realistically expect higher velocities.
15
Fig. 17. Same as Fig. 15 but fixing the temperature T = 109 K, and manually am-
plifying the ambipolar velocity by a factor 1000 in the simulation. The crustal Hall 
velocity has been reduced by a factor 10 in the plot, for clarity of visualization.

kyr. Looking in more detail at the dynamics, we can see that the 
crustal field slightly evolves, with a displacement of the toroidal 
torus, and a bending of the poloidal field lines. The very differ-
ent timescales of the crust and core evolution naturally tend to 
create strong currents to support the discontinuity in the tangen-
tial magnetic fields. The pattern of the ambipolar velocities follows 
those already obtained by [47]: at later times, �μ can in gen-
eral partially compensate the irrotational part of the Lorentz force. 
At the same time, velocities tend to be larger due to the smaller 
reaction rates. As a result, the pattern at late times is more com-
plicated than at early times, with a peak in the velocities close to 
the crust-core interface.

In Fig. 16 we show the radial profiles at the equator of �B , �E
and �j, around the crust-core interface (located in the middle of 
the range shown). The smooth electrical profiles (see § 2.7) are a 
key element to have a stable run. In the absence of such a tran-
sition region, the peaks visible in jθ and jφ at each side of the 
interface would be much more pronounced. The calculation of �va

depends strongly (via boundary conditions vr
a = 0, see § 2.4.2) on 

the Lorentz force at the interface, so that if the latter has strong 
discontinuities, the numerical evolution becomes unstable.
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For the sake of clarity only, we show in Fig. 17 the same Core
model, but where we have fixed the temperature to T = 109 K and 
multiplied the ambipolar velocity by a factor 1000. In this case, ve-
locities are artificially higher and the evolution proceeds faster in 
the core, although still slower than in the crust. Therefore, no vis-
ible changes are seen in the core topology. The ambipolar velocity 
pattern is smoother than in the T -evolving case. The higher Ohmic 
diffusion in the crust (due to the high temperature) causes the Hall 
dynamics to become less important and weaker discontinuities ap-
pear at the crust-core interface.

In general, the simulations performed here show that, since 
the ambipolar velocities are small and the bulk of currents and 
magnetic energy is located in the core, their dissipation is very 
slow. Compared to crust-confined configurations with the same 
initial dipolar fields, this implies: (i) a lower X-ray luminosity, 
(ii) a barely evolving dipolar field value, which is closely linked 
to the rotational evolution and in turn causes (iii) much longer 
periods (because higher electromagnetic torques are maintained). 
However, this is directly linked to our simplifying model assump-
tions. Slow evolution due to intrinsically low velocities is a result 
of non-superfluid matter, with no direct Urca present. Moreover, 
the initial configuration of our field has very large scales. There-
fore, in reality the evolution could be faster, if (i) superfluidity and 
superconductivity was included, (ii) the star was massive enough 
to activate the direct Urca channel, (iii) the magnetic energy was 
stored in smaller scales, or (iv) one is able to cure the numerical 
instabilities arising from the ambipolar calculations in presence of 
low temperatures (high velocities).

6. Conclusions

In this work we have published some detailed techniques that 
are needed to build a robust code for magneto-thermal evolution 
of neutron stars using finite volumes/finite differences and spheri-
cal coordinates.

The lastest version of the axially symmetric magneto-thermal 
code presented here in detail is faster and more versatile than 
previous implementations, since it includes alternative numerical 
methods for finite-volume schemes. The general improvement of 
the code, after an analysis of the computational bottlenecks, has 
allowed us to gain a speedup factor of ∼ ×5 − 10 in the overall 
CPU time (for the same infrastructure and input parameters of the 
crust-confined models), compared to the version used in e.g. [35]. 
Such improvements are mostly due to the simplification of existing 
routines, the use of implicit Fortran90/95 functions and sub-
routines, and taking advantage of vectorized operations. We have 
shown how the local calculations of microphysics represent the 
main computational bottleneck being, at the same time, a funda-
mental ingredient for realistic simulations.

The evolution of the induction equation in the crust suffers 
from a severe timestep constraint inherent to its non-linearity, but 
it takes only a few percent share of the computational cost. On 
the other side, it needs special treatment in terms of numerical 
techniques. From the careful assessment of different discretization 
methods within a full (not staggered) discrete grid, we conclude 
that two ingredients are fundamental to resolve the magnetic 
discontinuities, naturally arising in eMHD: (i) a simple upwind 
method in the definition of the toroidal electric field (determining 
the poloidal magnetic field) and (ii) a Burgers-like finite-difference 
formulation for the Hall part of the toroidal component of the 
induction equation. Without them, the range of applicability (mag-
netic field strengths and ages) reduces and the code is only par-
tially applicable to magnetars.

Among the tested time advance methods, EULA is the computa-
tionally most convenient one, having its optimal kcour little depen-
dence on the spatial resolution and on the scenario considered. 
16
RK4 is slightly slower than EULA for radial resolutions Nr � 100
and hot temperatures (i.e., low magnetization parameter), but is 
more prone to instabilities for finer resolutions and lower temper-
atures. The implementation of other methods (EUL, AB4 and the 
implicit scheme based on pseudospectral methods like in [22]) is 
much slower and computationally expensive.

Moreover, numerical instabilities in the crust tend to arise due 
to the Hall effect and strong gradients of ne , especially at early 
(� 1 kyr) and late (� 100 kyr) stages. The latter can be at least 
partially cured by the careful addition of a hyper-resistivity term, 
which does not change the global solution, and a substantial de-
crease of the timestep.

Generally speaking, the range of validity of the code, for which 
instabilities can be totally absent, can be defined as t � 105 yr, 
with initial magnetic fields that, if confined to the crust, can reach 
up to a few times 1014 G for the poloidal dipolar component, 
and a large-scale toroidal field of the same order of magnitude 
in terms of energy (comparing only its maximum value or the 
polar surface value of the dipole can be misleading, since what 
matters is the energy). Simulations with higher initial multipoles 
and/or higher magnetic fields are possible but more prone to non-
negligible numerical instabilities, affecting also the luminosity and 
possibly disrupting the solution (therefore they should be done 
with the due attention when drawing conclusions on these re-
sults).

We stress that finite-volume/finite-difference methods are able 
to capture the Hall-driven magnetic discontinuities, which are fun-
damental to resolve the details of the internal magnetic topology 
and, as a consequence, of the surface map. Spectral methods, on 
which a majority of current and past studies are based, cannot 
offer by construction such capability and the range of reliable ap-
plicability is therefore more limited.

An important novelty in the present work is the inclusion of the 
ambipolar diffusion in the core, using the recipe by [50], consist-
ing of calculating chemical potential deviations. We have smoothly 
matched the electric fields in the crust and in the core, therefore 
effectively coupling the evolution of the magnetic field in the two 
regions, without any (arguably unphysical) sharp current sheets at 
the interface. The main result is that the timescales for the case 
considered here (modified Urca process, no superfluidity/supercon-
ductivity), the timescales are much longer than the ∼ 1 − 100
kyr required to explain magnetars’ transient activity and persis-
tent high X-ray luminosities, arising from the dissipation of the 
currents.

We have also shown how a non-trivial crust-confined topol-
ogy can be maintained throughout the active life of a magne-
tar, in agreement with 3D magnetic evolution simulations [28,
82,83]. This, and the tangled magnetic fields produced in re-
cent core-collapse simulations [84] (which should be related to 
our initial data) reinforce the idea that pure large-scale mag-
netic fields are likely unrealistic. Complex topology should be the 
rule rather than the exception, finding also increasing (albeit indi-
rect) support through observations of old (� 105 yr) neutron stars 
[85–87].

In general, previous results shown in [35] hold if the same 
initial crust-confined configurations are used, with minor modi-
fications of luminosity, due to updates of the microphysics and 
envelope models mainly. The luminosity for the Core model con-
sidered in this paper is well below the one for the crust-confined 
models (for a fixed value of Bdip). This is due to the fact that in 
the Core model the curvature radius of the initial magnetic field 
lines is about ten times larger and most of the currents circulate 
in the core: therefore the total currents circulating in the crust are 
much less than in the crust-confined cases. Moreover, the mag-
netic field is coupled to the core evolution, which is much slower, 
at least in the case considered. However, several effects are ex-
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pected to potentially make the evolution in the core faster: more 
realistic and complex initial topology, the inclusion of direct Urca 
processes and the implementation of superconductivity and su-
perfluidity. Future numerical studies will include and study these 
effects.

The conclusions drawn from this study of methods will be con-
sidered in the future 3D extension of the code. Breaking axial 
symmetry implies that important differences have to be taken into 
account, among which are the following: (i) if finite differences/fi-
nite volumes are used and one coordinate is the radial distance 
from the center of the star, then one needs to use more than one 
system of coordinates to avoid the axis singularity of spherical co-
ordinates; (ii) the meridional and azimuthal components are mixed 
in the poloidal and toroidal components; (iii) the solenoidal con-
straint and the conservation laws have to be numerically respected 
considering the full dependence on the three coordinates (in par-
ticular, the EULA method and the Laplacian-based hyper-resistivity 
presented here would introduce a non-zero divergence of �B).

These intrinsic differences imply that the EULA advance and 
the Burgers-like correction in the discretized induction equation 
cannot be applied as in 2D. However, all remaining elements are 
applicable to a 3D code: the logical structure of the code, the mi-
crophysics, the cooling scheme (adapted to the 3D grid), and the 
rest of the magnetic field evolution techniques. Moreover, the sta-
bility studies and the computational assessment will be fundamen-
tal in guiding the development of a 3D magneto-thermal evolution 
code.
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Appendix A. Why not Cartesian coordinates?

An obvious alternative to a spherical grid is to use Cartesian co-
ordinates, widely used in the MHD community, and tested for the 
eMHD induction equation for the first time in [76]. They have the 
advantage that they simplify some geometrical factors in the oper-
ators and do not present any singularity on the axis, allowing an 
easy extension to 3D. However, this choice suffers from two main 
intrinsic problems: (i) it implies a much higher computational cost, 
due to the fact that you have to refine all directions even if you 
want to better resolve the radial gradients only; (ii) the projec-
tion of the spherical surface onto the Cartesian grid introduces 
spurious noise with characteristic patterns, as shown in Fig. A.18. 
The noise is partially cured by a computationally costly increase of 
17
Fig. A.18. Numerical noise typically arising from the alternative choice of Cartesian 
discretization of the surface, using the adaptive mesh refinement-based code Sim-
flowny [76]. The initial field is purely toroidal, so that no poloidal field should 
develop, fh is uniform, with η = 0. The plot shows how a vertical magnetic field in 
the equatorial plane (corresponding to the poloidal field component −Bθ ) develops. 
We show the same set-up (an extended domain covered by 1003 points), refined by 
a factor 2 (top) and 8 (bottom) in the region covering the crust.

resolution, as shown by the comparison between the top and bot-
tom panel. However, the noise tends to grow in time (unless it is 
damped by physical/numerical diffusivity), mixing with the phys-
ical small-scale whistler waves naturally arising from the system. 
The bottom line is that these two drawbacks leave spherical coor-
dinates as the most logical option.
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